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Abstract—Speech represents a fundamental medium for con-1

veying human emotions and, as a result, speech-based emotion2

recognition (SER) systems have become pivotal in advancing3

human-computer interaction (HCI) across a range of applica-4

tions. While significant progress has been made in speech emotion5

recognition over recent years, existing solutions still face several6

key challenges, in that they: (i) rely excessively on subjectively7

annotated (discrete) labels during training, (ii) often overlook the8

label ambiguity of speech samples that express more than one9

class of emotions, and (iii) underutilize unlabeled or ambiguous10

speech, for which typically a label distribution (or so-called soft11

labels) is available. To address these issues, we propose in this12

paper a novel SER model that explicitly handles ambiguous13

speech samples and overcomes the shortcomings outlined above.14

Central to our approach is a novel real-time soft-label correction15

strategy designed to refine the annotations assigned to ambiguous16

speech. The proposed model leverages both, (explicitly) labeled17

as well as ambiguous samples and applies the dynamic soft-label18

correction strategy alongside an enhanced inter-class difference19

loss function to iteratively optimize the label distributions during20

training. We theoretically demonstrate that our method is capable21

of approximating the true emotional distribution of speech even22

in the presence of label noise, suggesting that utilizing ambiguous23

speech samples without explicit emotion labels still contributes24

toward more effective emotion recognition. Furthermore, we25

integrate the representational power of convolutional neural26

networks (CNNs) with the contextual modeling capabilities of27

Wav2Vec 2.0 to enable a comprehensive extraction of spatio-28

temporal speech features. Experimental results on the IEMOCAP29

multi-label dataset confirm the effectiveness of our approach,30

achieving state-of-the-art performance with significant improve-31

ments in weighted accuracy (WA) and unweighted accuracy (UA)32

over competing methods.33

Index Terms—Speech emotion recognition, ambiguous speech,34

soft labels, real-time correction, spatio-temporal analysis35
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I. INTRODUCTION 36

Speech is one of the most natural ways of human communi- 37

cation that can directly express intentions and even emotional 38

states. The process of using computer technology to analyze 39

sound features from speech signals and infer the speaker’s 40

emotional state is commonly referred to as speech emotion 41

recognition (SER) [1]–[3]. Speech emotion recognition has 42

transitioned from a specialized research area to a significant 43

component of human-computer interation (HCI) [4], capable 44

of enhancing user experience in various application domains 45

[5], ranging from call-center conversations and in-vehicle 46

vehicle driving systems to smart-home application and smart 47

healthcare among others [6]. 48

Currently, most speech emotion recognition methods mainly 49

rely on explicit (hard) labels for model training [7], [8], where 50

each speech sample is assigned a single, discrete emotion 51

category. While such methods have achieved notable success, 52

they fall short in capturing the complexity of emotional ex- 53

pression in real-world scenarios, where speech often conveys 54

multiple overlapping emotions. For instance, an utterance la- 55

beled as ”sad” may concurrently also convey feelings of anger 56

and disappointment [9]. This illustrates the inherent ambigu- 57

ity and subjectivity present in emotional expression through 58

speech [10]. Moreover, emotional perception in speech can 59

also vary significantly across annotators due to individual 60

differences in cultural background, gender, age, and other 61

similar factors, suggesting that emotion perception is inher- 62

ently subjective [11]. Consequently, SER methods that rely on 63

single-label annotations not only fail to account for the ambi- 64

guity in emotional expression but also overlook the impact of 65

subjective cognitive biases among annotators, which is one of 66

the primary sources of label noise in emotion datasets [12]. 67

To address the limitations of single-label annotation, recent 68

research has increasingly explored multi-label approaches for 69

speech emotion recognition [13], [14]. Multi-labeled methods 70

leverage sets of emotion categories identified by multiple 71

annotators to represent the presence of various emotions within 72

a single utterance. While such approaches better capture the 73

multifaceted nature of emotional expression, they still fall 74

short in modeling the relative prominence of each emotion. In 75

practice, speech often conveys a mixture of emotions, with one 76

dominant emotion prevailing within the overall mixture. Tradi- 77

tional multi-label techniques are typically unable to represent 78

these proportions effectively. To mitigate this issue, researchers 79
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have introduced soft-label strategies [15], [16], where the80

distribution of annotator votes is used to assign weights to81

each emotion category, offering a more nuanced description of82

emotional content of the analyzed speech samples. However,83

such a soft-label approaches still heavily rely on the subjective84

judgments of a limited pool of annotators, and as a result,85

may introduce significant statistical noise and inconsistencies,86

which pose a considerable challenge for reliable training of87

speech emotion recognition (SER) models.88

Furthermore, several studies have investigated the use of89

ambiguous speech samples for emotion recognition through90

multi-classifier interaction learning [17] and joint-learning91

[18] frameworks in an attempt to mitigate the limitations92

of multiple and soft labels by allowing the model to infer93

emotional distributions directly from the data. However, such94

approaches typically overlook speech samples that lack dom-95

inant emotions, i.e., samples that inherently carry the most96

ambiguity. In practice, the subjectivity of emotion perception97

and the ambiguity of emotional expression are most evident in98

these unlabeled or weakly labeled instances, where annotators99

are less likely to agree on a dominant emotion due to unclear100

affective cues [19]. This leads to inconsistencies in annotations101

and challenges in model training. Moreover, in real-world102

scenarios, it is common for speech utterances to lack a clearly103

dominant emotion that is agreed upon by a majority of104

annotators. As a result, existing methods that depend solely105

on speech samples with consensus labels fail to capture the106

full complexity of emotional ambiguity and do not adequately107

address the inherent uncertainty present in natural speech.108

To address the above challenges, we propose in this paper109

a novel model for speech emotion recognition that explicitly110

targets the inherent uncertainty and ambiguities in emotional111

speech. Our approach simultaneously incorporates both un-112

labeled examples as well as samples with explicit discrete113

labels during training. Labeled samples provide supervision114

to guide the learning process, while ambiguous samples115

are iteratively refined using a soft label update mechanism116

in conjunction with an enhanced inter-class difference loss117

function. This enables the model to dynamically correct and118

learn from emotionally ambiguous data. Unlike existing SER119

methods that rely on static soft labels, sample reweighting,120

or offline label preprocessing, our model performs real-time,121

model-driven correction of ambiguous label distributions and122

jointly optimizes label refinement and representation learning123

within a single end-to-end framework. Moreover, we provide124

a theoretical analysis showing that this dynamic correction125

process guides the model toward the underlying true emo-126

tional distribution despite noisy or subjective annotations.127

Experimental results demonstrate that our method outperforms128

existing state-of-the-art approaches, particularly in its ability129

to effectively handle the ambiguity and subjectivity inherent in130

real-world speech emotion recognition. In summary, we make131

the following contributions in this paper:132

1) We propose a novel speech emotion recognition (SER)133

approach, designed specifically to handle ambiguous134

speech, that addresses some of the key limitations of135

existing SER models, including the over-reliance on136

subjectively annotated labels, neglect of emotional distri-137

butions, and the underutilization of ambiguous samples 138

lacking explicit (hard, consensus) emotion labels. 139

2) We introduce a real-time soft label correction strategy, 140

theoretically validated to guide the model toward learning 141

the true emotional distribution, even in the presence of 142

label noise. This strategy offers a generalizable solution 143

for other tasks involving noisy/ambiguous annotations. 144

3) We construct a comprehensive spatial-temporal feature 145

extraction pipeline by combining the representational 146

strengths of CNNs and Wav2Vec 2.0. Through a novel 147

multi-level fusion mechanisms, our model effectively in- 148

tegrates time-frequency emotional cues for robust speech 149

emotion recognition. 150

It should be noted that in this work, the term spatial specif- 151

ically refers to the frequency dimension of the spectrogram, 152

which can be treated analogously to the spatial axis in image 153

processing when applying 2D-CNNs. The term temporal corre- 154

sponds to the time dimension, capturing the dynamic evolution 155

of speech signals. 156

II. RELATED WORK 157

In this section, we now discuss relevant prior work related to 158

the research presented in this paper. For a more comprehensive 159

coverage of the area of speech emotion recognition (SER), the 160

reader is reffered to some of the excellent surveys available in 161

the literature on this topic, i.e., [6], [20]–[23]. 162

Early work in speech emotion recognition (SER) primarily 163

relied on single-label annotations derived through majority 164

voting (i.e., consensus labels hereafter) across annotators. To 165

better exploit the spatio-temporal characteristics of speech sig- 166

nals, Ye et al. [24] introduced a time-aware bidirectional scal- 167

ing network designed to integrate information from both past 168

and future contexts, thereby enhancing the model’s contextual 169

representation capabilities. Li et al. [25] proposed a model that 170

combines a spatiotemporal attention mechanism with a large- 171

horizon learning strategy built on a CNN backbone, effectively 172

localizing emotional regions while mitigating feature overlap. 173

Building on this idea, Wu et al. [26] replaced attention mod- 174

ules with a capsule network to improve recognition accuracy 175

by capturing hierarchical relationships among features. Gan et 176

al. [27] developed a spatial-temporal network that integrates 177

features through multiple fusion strategies, achieving strong 178

performance in capturing both spatial and temporal cues. 179

While the studies outlined above have significantly ad- 180

vanced SER through various modeling strategies in the spatial, 181

temporal, and joint domains, they generally do not address 182

the issue of ambiguous emotional expressions in speech. To 183

indirectly tackle this problem, Wang et al. [28] leveraged 184

large language models (LLMs) to generate emotionally rich 185

synthetic speech data based on a student speech dataset, 186

while Yu et al. [29] applied an Attention-LSTM-Attention 187

architecture to augmented datasets, aiming to enhance label 188

robustness and alleviate ambiguity-related challenges. Several 189

studies have also looked at the model architecure to reduce 190

the impact of speech ambiguity on emotion recognition. Fan 191

et al. [8], for example, introduced an Individual Standardized 192

Network (ISNet) that addresses inter-individual variability in 193
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emotional expression and, thus, aims to reduce confusion194

caused by personalized affective patterns. Yin et al. [30]195

proposed a progressive co-teaching strategy inspired by human196

and animal learning processes, where the model is trained on197

samples of increasing complexity (from simple to ambiguous)198

to mitigate the negative influence of emotionally ambiguous199

data on training stability. While these approaches acknowledge200

the challenges posed by emotional ambiguity, they still mostly201

rely on single-label annotations and, in turn, fail to capture202

the nuanced, multi-dimensional nature of emotional expression203

in speech. As a result, these methods suffer from inadequate204

feature representation, limiting their ability to fully model the205

complexity of real-world emotional speech.206

Recognizing the limitations of single-label approaches, sev-207

eral studies have proposed alternative labeling strategies to208

better capture the inherent ambiguity in emotional speech.209

These efforts aim to model the coexistence of multiple emo-210

tions within an single utterance and account for inter-annotator211

variability in emotion perception. Li et al. [14], for instance,212

employed multiple labels as the ground truth for model213

training and introduced an inter-class difference loss function214

to reduce the similarity between emotion classes, thereby215

facilitating more accurate modeling of emotion distributions.216

However, while such multi-label approaches can indicate the217

presence or absence of emotions, they often fail to distinguish218

between dominant and subordinate emotions in speech sam-219

ples, which is critical when dealing with ambiguous speech.220

The seminal work of Steidl et al. [15] introduced soft labels,221

which reflect the proportion of annotator votes across emotion222

categories to capture perceptual ambiguity more precisely and223

addressed this problem. The authors also showed that the224

entropy of these soft labels closely aligns with the entropy225

of labels generated by an artificial/simulated annotator, sug-226

gesting that such soft labels effectively capture the annotators’227

perception of ambiguous emotions. Despite this advancement,228

most studies employing soft labels rely directly on observed229

annotator distributions, failing to account for the underlying230

subjectivity and variability in human emotion perception. As231

a result, these approaches risk embedding annotator bias into232

the training process, which may distort the model’s ability to233

learn the true emotional content. To address this issue, Fayek234

et al. [11] proposed modeling individual annotators separately235

and integrating their outputs to generate more robust multi-236

label representations. Building on this line of work, Ando237

et al. [31] successfully incorporated speech samples lacking238

a single (discrete, consensus) label by modifying the soft-239

label representation to accommodate ambiguous expressions.240

Subsequently, Ando et al. [13] extended this framework by241

leveraging soft labels over multi-label annotations in repeated242

training runs, enabling a more comprehensive use of the full243

dataset, including emotionally ambiguous samples. Neverthe-244

less, even these methods fall short of fully addressing anno-245

tator subjectivity, where individual perceptions may diverge246

significantly from the consensus, thus, introducing label noise247

that can mislead the model and compromise its ability to learn248

accurate emotional distributions.249

In response to the challenges posed by label noise, Wang250

et al. [32] proposed a unified two-stage framework, con-251

sisting of labels noise modeling and correction training, to 252

address different types of label noise in image classification 253

tasks. Building on this concept, Liu et al. [33] introduced a 254

validation-based mechanism to determine whether labels in 255

the training set should be revised and demonstrated improved 256

model robustness through selective label correction. Inspired 257

by these label correction strategies, Fujioka et al. [34] applied 258

a meta-learning approach that combines corrected labels with 259

sample weight estimation to update noisy annotations. 260

In the context of speech emotion recognition, Mao et al. 261

[35] observed that static soft labels fail to capture the dynamic 262

nature of emotional expression, and, thus, proposed an emo- 263

tion profile refinement strategy that generates soft labels in 264

real time to better represent emotional evolution in speech. 265

While these approaches mark significant progress in SER, 266

they still largely neglect samples without consensus labeles, 267

i.e., samples that are most representative of the ambiguity 268

and uncertainty inherent in natural emotional speech. Ignoring 269

such traning samples limits the ability of classification models 270

to learn comprehensive and robust emotional representations. 271

Beyond these general label correction strategies, recent works 272

have introduced meta-learning and co-teaching frameworks 273

directly into speech emotion recognition (SER). For example, 274

Yin et al. [36] proposed a progressive co-teaching approach 275

to mitigate the impact of emotionally ambiguous labels by 276

iteratively exchanging reliable samples between peer networks. 277

Chopra et al. [37] and Cai et al. [38] further explored 278

meta-learning paradigms for low-resource or multi-task SER, 279

showing that adaptive reweighting of uncertain annotations 280

can improve robustness. However, these approaches mainly 281

rely on sample reweighting or selection, while leaving the 282

underlying label distributions unchanged, which may limit 283

their effectiveness for inherently ambiguous emotional speech. 284

Inspired by the research discussed above, we propose in this 285

paper a novel model for ambiguous speech emotion recogni- 286

tion. At the core of our approach is an innovative real-time 287

soft label correction strategy, specifically designed to handle 288

emotionally ambiguous speech samples. We theoretically and 289

empirically demonstrate that this strategy effectively captures 290

the underlying emotional distribution, even in the presence of 291

noisy or unreliable labels. Furthermore, we leverage the rep- 292

resentational power of convolutional neural networks (CNNs) 293

alongside the contextual learning capabilities of Wav2Vec 2.0 294

to perform a detailed analysis of the speech signal’s spa- 295

tiotemporal characteristics. By employing multi-level feature 296

fusion, our model efficiently integrates these representations, 297

and allows for a robust and comprehensive understanding of 298

speech emotions. 299

III. SOFT-LABEL CORRECTION STRATEGY 300

A key component of the speech emotion recognition model 301

proposed in this work is a novel soft-label correction strat- 302

egy, designed specifically to account for the ambiguity of emo- 303

tional speech and emotion perception from the annotators. In 304

this section, we first motivate the need for soft-label correction 305

and then theoretically show that soft-label correction leads to 306

better ground truth and, in turn, better recognition models. 307
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A. Problem Description308

The variability in individual emotion perception typically309

leads annotators to assign different emotional labels to the310

same speech sample, resulting in samples that are annotated311

with multiple labels. In most existing speech emotion recog-312

nition (SER) methods, the prevailing approach is to adopt the313

emotion category with the highest number of votes as the314

final (consensus) label for the utterance. However, this practice315

introduces two key limitations:316

1) Human speech frequently conveys a mixture of emotions,317

and majority-vote labeling fails to capture the nuanced318

and overlapping emotions inherent in natural speech.319

2) Due to the subjectivity of human emotion perception,320

annotators often struggle to reach consensus, leading to321

uncertainty and ambiguity in soft-label distributions.322

We propose a real-time soft label correction strategy that323

leverages the emotional features extracted through spatiotem-324

poral neural networks. This strategy is designed to more325

accurately model the subtle emotional variations in speech326

while reducing the impact of noisy or ambiguous labels that327

could negatively affect model performance. Additionally, we328

provide a theoretical foundation to support the effectiveness of329

the proposed correction mechanism in learning more reliable330

emotional representations.331

B. Real-time Soft-Label Correction Strategy332

The proposed real-time soft label correction strategy con-333

sists of two key components. First, it employs a dynamic334

soft label update mechanism to iteratively refine the soft335

labels associated with ambiguous speech segments. This ap-336

proach reduces overreliance on potentially noisy ground truth337

annotations and enables more accurate emotion representation.338

Second, the strategy incorporates a joint loss function specif-339

ically designed to support real-time label refinement. This340

loss function combines a standard cross-entropy term to ensure341

stable model training with an enhanced inter-class difference342

loss, which encourages greater discrimination between emo-343

tion categories. These components jointly improve the quality344

of soft labels and enhance overall model performance.345

Soft-Label Updating Mechanism. The soft label updating346

process for ambiguous speech samples is formulated as a347

weighted combination of the observed (annotator-provided)348

labels and the model-generated predictions. This design is349

based on two key observations: (i) deep learning models excel350

at capturing complex patterns in data and can produce reliable351

emotion predictions from the provided speech samples when352

trained effectively, and (ii) the observed annotator provided353

labels, though potentially noisy, are generally close approx-354

imations of the true emotional states. Thus, combining both355

sources through a weighted summation enables the model to356

benefit from the provided (prior, potentially noisy) annotations357

while gradually incorporating its own learned representations358

and thereby improving label quality over time.359

Importantly, the soft label refinement process is applied360

exclusively to ambiguous speech samples. For unambiguous361

samples, annotated with a consensus label, the original labels362

are retained without modification. This is based on the premise 363

that clearly expressed emotions are less prone to annotator 364

disagreement and are thus less likely to contain labeling errors. 365

From this perspective, we classify all speech samples in a 366

given dataset into two disjoint subsets: 367

• Clear samples (SA), i.e., samples with (single) discrete 368

consensus labels that exhibit strong agreement across 369

annotators w.r.t. the expressed emotion. 370

• Ambiguous samples (SB), i.e., samples associated with 371

multiple labels that reflect disagreement among annota- 372

tors and emotional uncertainty. 373

Let S denote the full set of speech samples, such that 374

S = SA

⋃
SB and SA

⋂
SB = ∅. Furthermore, let N1, N2, 375

and N be the number of clear samples in SA, ambiguous 376

samples in SB , and samples in the complete set S, respectively. 377

In a supervised K-class classification task, the labels corre- 378

sponding to the set of clear samples SA are single (consensus) 379

labels yx
i

cons, defined as the emotion categories considered by 380

the majority of annotators, i.e.: 381

yx
i

cons = (yx
i

1 , y
xi

2 , · · · , yx
i

K ), yx
i

j ∈ {0, 1}, (1)

where
∑
yx

i

j = 1, i ∈ {1, · · · , N1}, xi ∈ SA denotes 382

the ith speech sample. A value of yx
i

j = 1 indicates that 383

the majority of annotators assigned the jth emotion class to 384

sample xi, whereas a value of 0 indicates otherwise. This one- 385

hot encoding reflects the assumption that each clear sample is 386

associated with a single dominant emotion. 387

However, due to the limited number of annotators and 388

the inherently subjective nature of emotion perception, many 389

samples exhibit label ambiguity. These ambiguous samples (in 390

SB) are characterized by inconsistent annotator opinions and 391

are labeled using multi-label representations yx
i

multi, i.e.: 392

yx
i

multi = (tx
i

1 , t
xi

2 , · · · , tx
i

K ), tx
i

j ∈ {0, Z+}, xi ∈ SB , (2)

where, i ∈ {1, · · · , N2}, Z+ denotes the set of positive 393

integers, and N2 is the number of ambiguous samples in SB . 394

Here tx
i

j represents the number of annotators who assigned 395

the jth emotion label to speech sample xi, capturing the 396

distribution of annotator responses. Since this form is not 397

directly compatible with standard model training objectives, 398

it is often converted to a binary multi-label form, as in [14]: 399

yx
i

multi = (sx
i

1 , s
xi

2 , · · · , sx
i

K ), sx
i

j ∈ {0, 1}, xi ∈ SB , (3)

where i ∈ {1, · · · , N2}, and sx
i

j = 1 (or 0) indicates whether 400

at least one annotator perceived (or did not perceive) the 401

presence of the jth emotion in sample xi. It is evident that 402

Eq. (1) is a special case of Eq. (3), i.e., when
∑
sx

i

j = 1, both 403

formulations are equivalent. 404

Nevertheless, this multi-label representation does not reflect 405

the relative prevalence of each emotion in the given speech 406

sample. To address this limitation, soft-labels yx
i

s , which 407

capture the proportion of annotator votes for each emotion 408

class, are commonly used instead. Here, soft-labels are defined 409

as a probability distribution over the K emotion classes: i.e.: 410

yx
i

s = (px
i

1 , p
xi

2 , · · · , px
i

K ), px
i

j ∈ [0, 1], (4)
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where
∑
px

i

j = 1, i ∈ {1, · · · , N2}, and each px
i

j is computed411

as:412

px
i

j =
tx

i

j∑K
m txi

m

, (5)

with tx
i

j denoting the number of annotators who assigned the413

jth emotion label to sample xi. This formulation captures414

the proportion of votes per class and reflects the perceived415

emotional distribution. However, due to the limited number of416

annotators and the subjectivity of emotion perception, these417

soft labels may still contain inaccuracies and may not fully418

reflect the true emotional composition of the speech sample.419

To alleviate this problem, we introduce a soft-label update420

mechanism that generates corrected soft-labels yx
i

c as follows:421

yx
i

c =

{
yx

i

cons, x
i ∈ SA,

(1− α)yx
i

s + αyx
i

g , α ∈ [0, 1), xi ∈ SB ,
(6)

where yx
i

c denotes the corrected labels for sample xi, yx
i

s422

stands for the original soft label and yx
i

g is the label predicted423

by the emotion recognition model for the same sample. The424

parameter α ∈ [0, 1) is a correction coefficient that controls425

the contribution of the model-generated prediction to the final426

soft label. For clear samples (xi ∈ SA) the original consensus427

label is retained, while for ambiguous samples (xi ∈ SB), the428

corrected label is obtained through a weighted combination of429

the original soft label and the model-generated label.430

The Joint Loss Function. The overall training objective431

for our model is defined by a joint loss function L, which432

combines two components: a cross-entropy loss Lcor for433

optimizing model predictions, and an enhanced inter-class434

difference loss LIc designed for real-time soft-label correction.435

The cross-entropy loss Lcor quantifies the divergence be-436

tween the predicted emotion distributions and the target labels437

and is widely used in supervised classification tasks. It is438

formulated as:439

Lcor = − 1

N

N∑
i=1

K∑
j=1

yx
i

j log(px
i

j ), xi ∈ S, (7)

where where the predicted probability px
i

j for class j is440

computed via the softmax function:441

px
i

j =
exp(ox

i

j )

K∑
k=1

exp(ox
i

k )

. (8)

Here, N denotes the total number of training samples, ox
i

j442

is the model output (logit) for class j, yx
i

j ∈ [0, 1] is the443

target label (either consensus or soft label) and px
i

j enotes the444

predicted probability for emotion class j in speech sample xi.445

To support the dynamic correction of soft labels for am-446

biguous samples, an additional loss term LIc is introduced.447

This enhanced inter-class difference loss acts as a regular-448

ization mechanism, guiding the model-generated labels yx
i

g449

to remain consistent with the observed soft labels yx
i

s , while450

mitigating overfitting, particularly when the dataset contains a451

large proportion of ambiguous samples. Unlike the inter-class452

difference loss originally proposed in [14], which assumes 453

binary labels, the enhanced version here accommodates soft 454

labels yx
i

j ∈ {0, 1}. The loss is defined as: 455

LIc =


0, xi ∈ SA,

1

N2

N∑
i=1

K∑
j=1

K∑
k=1

(
exp(u)− 1

)
, xi ∈ SB ,

(9)

where 456

u = max

{
0,

(
1− yx

i

j

)(
px

i

j + β
)
− yx

i

j p
xi

k

}
. (10)

Here, xi ∈ S
B

denotes an ambiguous speech sample, yx
i

j ∈ 457

[0, 1] is the corrected soft label for class j, px
i

j is the cor- 458

responding predicted probability, and β is a margin control 459

coefficient that regulates the separation between class predic- 460

tions. This loss encourages higher inter-class discrimination, 461

especially in ambiguous contexts. Given the bounded nature of 462

yx
i

j , β, and px
i

k , the value of LIc is constrained to the interval 463[
0, k2(exp(2)− 1)

)
. 464

The final joint loss L used for training is the sum of the 465

two components, i.e.: 466

L = Lcor + LIc. (11)

C. Feasibility Analysis 467

In the previous section, we introduced the real-time soft 468

label correction strategy. In this section we now present a theo- 469

retical analysis and a formal proof to validate the effectiveness 470

of the proposed strategy. 471

Proof Overview. The main idea of the proof is to demonstrate 472

that, under a reasonable setting of the correction coefficient α 473

and margin control coefficients β, the model parameters θ′M 474

obtained through the real-time soft label correction strategy 475

can converge to a region near the optimal parameters θt, which 476

are obtained using the true label distribution. In other words, 477

the strategy effectively guides the training process toward the 478

underlying ground-truth distribution despite the presence of 479

noisy or ambiguous labels. To support this claim, we first 480

present two foundational lemmas: 481

Lemma 1. There exists a two-layer neural network with 482

ReLU (Rectified Linear Unit) activation functions and 2n+ d 483

parameters that can represent any function over a dataset of 484

n samples in a d-dimensional space [39]. 485

Lemma 1 implies that a sufficiently parameterized deep neural 486

network can approximate any label distribution, regardless of 487

the choice of loss function. 488

Lemma 2. Assuming a neural network with sufficient capacity, 489

for any loss function, L, the training dynamics follow the 490

convergence path: fθ0 → fθt → fθ∗ , where fθ0 is the 491

is the model initialized with random parameters θ0, fθt is 492

is the model trained with true (clean) labels, and, and fθ∗ 493

corresponds to the model trained with observed (possibly 494

noisy) labels [33]. 495
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Lemma 2 suggests that while training may begin with ran-496

dom initialization, convergence paths under true labels and497

observed labels are both attainable and related.498

Building upon these lemmas, the following theorem pro-499

vides the basis for analyzing the behavior of the proposed500

correction strategy:501

Theorem 1. Let θt denote the model parameters after t502

optimization steps using true labels, and let θM denote the503

parameters after M steps (M > t) using observed, poten-504

tially noisy labels. Then, the final parameters θM lie with a505

neighborhood of θt, i.e., θM ∈ [θt −RM , θt +RM ], where506

RM denotes the radius of the neighborhood that quantifies507

the deviation caused by label noise.508

Theorem 1 implies that if the label correction mechanism509

effectively reduces the noise in observed labels (by leveraging510

model-generated predictions and controlling the correction511

dynamics via α and β) then the model can be guided to512

converge toward a representation close to that obtained under513

true labels.514

Proof : According to Lemma 1, a sufficiently parameterized515

model can fit any label distribution and will converge after at516

most M optimization steps. Lemma 2 further states that the517

model, initialized at θ0 reaches the parameter state θt after t518

iterations when trained on true grount truth labels ytrue. Let us519

consider the standard parameter update rule in deep learning.520

At iteration t+1 the model parameters are updated as follows:521

θt+1 = θt − lr · g(θ)
∣∣∣
θ=θt

, (12)

where lr is the learning rate, and g(θ) = ∂L
∂θ denotes the522

gradient of the loss function L with respect to the parameters.523

By recursively applying this update rule, the model parameters524

at iteration M can be expressed as:525

θM = θt − lr

M−t−1∑
i=0

g(θ)
∣∣∣
θ=θt+i

. (13)

Let us define the average gradient during the convergence526

process as: ψ = 1
M−t

∑M−t
i=0

∂L
∂θt+i

. Since this expression is527

bounded for all t + i ∈ [t,M − 1], the average gradient ψ528

satisfies:529

min
t≤i≤M−1

{g(θ)
∣∣∣
θi
} ≤ ψ ≤ max

t≤i≤M−1
{g(θ)

∣∣∣
θi
}. (14)

From Eq. (14), it follows that the final model parameters530

θM lie within a neighborhood around the true label-trained531

parameters θt with a radius defined by the learning rate and532

maximum gradient norm:533

θM ∈ {θ|θt −RM ≤ θ ≤ θt +RM}, (15)

where RM = lrmax{|g (θt)| , · · · , |g (θM−1)|}.534

According to Theorem 1, when the real-time soft label 535

correction strategy is applied, the gradient g(θ) is defined as: 536

g(θ) =



N∑
i=1

K∑
j=1

(
m
N2

K∑
k=1

vijk exp(uijk)−
(yc)

xi

j

Npx
i

j

)
,

m = 0, xi ∈ SA,

m = 1, xi ∈ SB ,

(yc)
xi

j = (ycons)
xi

j , xi ∈ SA,

(yc)
xi

j = (1− α) (ys)
xi

j + αpx
i

j , xi ∈ SB ,

uijk =
(
1− (ys)

xi

j

)
(px

i

j + β)− (ys)
xi

j px
i

k ,

vijk =
(
1− (ys)

xi

j

)
− (ys)

xi

k
∂px

i

k

∂px
i

j

.

(16)

Eq. (16) indicates that the gradient and, hence, the convergence 537

behavior of the model is directly influenced by the correction 538

coefficient α and the margin control coefficient β. These 539

parameters modulate the extent to which model predictions 540

correct or align with the soft labels, thereby controlling the 541

size of the radius RM in which convergence occurs. 542

Theorem 2. Let M
(
xi
∣∣θ) be a training network converging 543

at iteration M iteration using observation labels and yielding 544

model parameters θM . Suppose the observation labels are 545

subsequently corrected and the network is retrained. Upon 546

convergence after M iterations with corrected labels, the 547

resulting parameters θ′M lie within a neighborhood of θM , 548

i.e., θ′M ∈ [θM −R′
M , θM +R′

M ], where R′
M is the radius of 549

the neighborhood. 550

Proof : According to Theorem 1, the parameters θM , ob- 551

tained after training with observation labels, lies within a 552

neighborhood of the true-label parameters θt, such that 553{
θM = θt + n1RM , n1 ∈ [−1, 1],

θ′M = θt + n2Rc
M , n2 ∈ [−1, 1].

(17)

where RM and Rc
M are the neighborhood radii associated with 554

training under observation labels and corrected labels, respec- 555

tively. n1 and n2 are scaling constants reflecting directional 556

distance. It follows that θ′M can be expressed relative to θM 557

as: 558

θ′M = θM + nR′
M = θM + n2R

c
M − n1RM , n ∈ [−1, 1]. (18)

Thus, θ′M ∈ [θM − R′
M , θM + R′

M ], confirming that the 559

corrected-label solution lies in the vicinity of the original 560

observation-label solution, where n is a constant and R′
M is 561

the neighborhood radius. 562

Fig. 1 illustrates two possible relationships between the 563

neighborhoods defined by Theorems 1 and 2. Here: 564

• O1 represents the region around θM wiht radius R′
M , 565

within which θ′M is located. 566

• O2 represents the region centered at θt, defined by the 567

original radius RM . 568

In both scenarios, the shaded area denotes regions where 569

θ′M is closer to θt than θM . Since observation labels are fixed 570

for a given dataset, the size of neighborhood O2 remains 571

approximately constant for a given model. Let’s define the 572

proportion of the shaded ara S to the are of O1, denoted as 573

SO1
, as: 574

P =
S

SO1

. (19)
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Fig. 1: Illustration of the relationship between the two
neighborhoods identified in Theorem 1 and Theorem 2

A higher value of P indicates a greater probability that θ′M575

lies closer to the true-label parameters θt than θM . For a576

constant RM , the probability P increases as RM decreases.577

The correction radius R′
M is influenced by the correction578

coefficient α and the margin control coefficients β. This579

control relationship can be expressed as:580 (
α, β

)
→

(
RM , R

c
M

)
→ R′

M → P (20)

where → denotes the directional influence of the preceding581

variables on the subsequent ones.582

In summary, by appropriately tuning α and β, it is possible583

to reduce the neighborhood radius R′
M , thereby guiding θ′M584

closer to θt than θM , which establishes the theoretical fea-585

sibility and effectiveness of the proposed real-time soft label586

correction strategy.587

IV. THE PROPOSED METHOD588

In this section, we now present the main contribution of this589

work, i.e., our novel model for speech emotion recognition,590

designed specifically to handle ambiguous speech samples.591

We start the section with a brief high-level description of the592

proposed approach and then proceed with the description of593

the individual components.594

A. Overview595

Speech emotion recognition remains challenging due to596

label ambiguity, subjective annotation noise, and the complex597

temporal–spectral dynamics of speech signals, as discussed598

in the Introduction. To address these challenges, we propose599

an enhanced ambiguous speech emotion recognition model,600

illustrated in Figure 2. The model architecture consists of five601

main components that are described in detail in the following602

sections, i.e.: (i) a spatial feature extraction module (§IV-B),603

a temporal module (§IV-C), a multi-level fusion module604

(§IV-D), a real-time soft label correction module (§IV-E), and605

a classification module that determine the final emotion class606

of the input speech sample (§IV-F).607

B. The Spatial Module608

We use Log Mel-Filter Bank (Fbank) features as the in-609

put, which form a conventional time–frequency spectrogram610

widely adopted in speech and audio processing. This represen- 611

tation provides a two-dimensional structure suitable for CNN- 612

based modeling. The resulting Fbank feature maps are fed 613

into a convolutional network, i.e., the spatial domain module, 614

for hierarchical emotion feature extraction. The architecture of 615

this module is illustrated in Figure 3. 616

To align with the input format expected by 2D convolutional 617

layers, we first reshape the extracted Fbank features into a 618

three-dimensional tensor Xin ∈ R1×f×M , where ‘1’ denotes 619

the input channel dimension required by 2D-CNNs, f denotes 620

the number of frames and M represents the number of Mel 621

filter banks. This representation preserves the two-dimensional 622

time-frequency structure of speech, which is essential for 623

learning emotion-relevant spatial patterns. 624

Given that each Fbank feature map captures spectral in- 625

formation over a sequence of frames, we design a parallel 626

convolutional structure to extract features along different 627

axes of the time-frequency domain. Specifically, we apply 628

three parallel convolutional operations: one emphasizing tem- 629

poral patterns, another focusing on spectral characteristics, and 630

a third capturing joint time-frequency dependencies. Unlike 631

conventional CNN-based SER approaches that apply uniform 632

2D kernels directly on spectrograms, our parallel design ex- 633

plicitly separates temporal, spectral, and joint Spatio-temporal 634

modeling through distinct kernel shapes (11×1, 1×9, and 5×5). 635

This decomposition enables the model to capture complemen- 636

tary emotional cues from different perspectives before fusing 637

them into a unified representation. The output of this parallel 638

convolution block is defined as: 639

Xc = C
(
Conv1a(Xin), Conv

1b(Xin), Conv
1c(Xin)

)
,

(21)
where Xc ∈ R24× f

2 ×
M
2 , and C(·) denotes channel-wise 640

concatenation. The operations Conv1a(·), Conv1b(·), and 641

Conv1c(·) correspond to convolution layers designed to cap- 642

ture temporal, spectral, and joint temporal-spectral features, 643

respectively. 644

To further deepen the representation and aggregate mid-level 645

features, we pass Xc through five consecutive convolutional 646

layers using 3 × 3 kernels. These layers progressively refine 647

the feature maps while reducing spatial resolution. Notably, no 648

downsampling is applied after the final convolution to preserve 649

critical information. The resulting feature map Xd is given by: 650

Xd = Conv5(Xc), Xd ∈ R96× f
32×

M
32 , (22)

where Conv5(·) represents the stacked five-layer convolu- 651

tional block. Finally, we apply global average pooling (GAP) 652

to compress the spatial feature map into a fixed-dimensional 653

embedding Xs ∈ R96, which serves as the output of the spatial 654

domain module: 655

Xs = GP (Xd), Xs ∈ R96, (23)

where GP (·) denotes global average pooling. This operation 656

summarizes the learned spatial features into a compact repre- 657

sentation suitable for downstream fusion and classification. 658
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Fig. 2: High-level overview of the proposed ambiguous speech emotion recognition model. The model integrates a spatio-
temporal feature extraction module based on deedicated CNN and Wav2Vec 2.0, followed by multi-level fusion to capture
complementary emotional cues. A real-time soft label correction module is also designed to dynamically refine ambiguous
labels during training using a combination of cross-entropy and enhanced inter-class difference losses.
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Fig. 3: Structure of the spatial module. The module operates
on a time–frequency representation of the input speech. It
employs three parallel convolutional branches with kernel
sizes of 11×1, 1×9, and 5×5, respectively, corresponding to
temporal, spectral, and joint Spatio-temporal modeling. Each
branch outputs 8 feature maps, where “8” denotes the number
of convolutional filters (channels) used to capture diverse
patterns.

C. The Temporal Module659

Speech waveforms are continuous-time signals, and cru-660

cial emotion-related information is often embedded in their661

temporal variations. Accurately modeling these dynamic is662

thus essential for robust speech emotion recognition. To this663

end, we leverage Wav2Vec 2.0, a powerful self-supervised664

representation learning framework pre-trained on large-scale665

speech corpora. Its strong contextual encoding capabilities666

provide valuable a priori knowledge, allowing it to effectively667

extract rich temporal emotion features from raw waveforms.668

The temporal module, illustrated in Figure 4, is employed669

to extract such features directly from the input waveform.670

Given an input temporal speech waveform xi we first apply671

a series of one-dimensional convolutional layers to produce a672

feature map G ∈ RT×d1 , where T corresponds to the number673

of frames (which varies with input length), and d1 is the674

feature dimension. A linear transformation is then applied to675

project G into a new representation space:676

G′ = Linear(G), G′ ∈ RT×d2 , (24)

where d2 denotes the dimension of the transformed features.677

To improve robustness and simulate masked language mod-678

Wav2vec2.0

T
ran

sfo
m

er

M
ask

ed

...

C
N

N
C

N
N

L
in

ea
r

T×d2

1×T 1×d2

Attention mechanism

Matrix multiplicationMatrix multiplication InputInput

Fig. 4: Structure of temporal module. We use Wav2Vec 2.0
to extract high-level temporal features from raw speech wave-
forms using convolution, masking, and transformer blocks.

eling objectives during fine-tuning, a masking operation is 679

applied to G′, yieldig: 680

F1 = Mask(G′)∈RT×d2 , (25)

where Mask(·) randomly masks segments of the sequence. 681

The masked features are then passed through the Transformer 682

encoder of Wav2Vec 2.0: 683

F2 = Transformer(F1) ∈ RT×d2 . (26)

To obtain a fixed-length temporal feature vector, we apply 684

another linear transformation followed by a weighted aggre- 685

gation using matrix multiplication: 686

F ′
2 = Linear(F2), F ′

2 ∈ R1×T , (27)
687

Ft = F ′
2 ⊗ F2, F

′ ∈ R1×T , Ft ∈ R1×d2 , (28)

where ⊗ denotes matrix multiplication. The resulting vector 688

Ft represents the aggregated temporal features of the input 689

speech that captures high-level emotional information across 690

the entire sequence. 691

D. The Multi-level Fusion Module 692

Since analyzing temporal or spatial features in isolation 693

limits the model’s ability to fully capture the multifaceted 694

nature of speech signals, we introduce a multi-level fusion 695

module to integrate both temporal and spatial emotion repre- 696

sentations. This design allows the model to comprehensively 697
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learn emotional cues that are distributed across time and698

frequency dimensions.699

First, we obtain an intermediate fused representation Fst700

by concatenating the spatial emotion feature Xs ∈ Rd1 and701

temporal emotion feature Ft ∈ Rd2 , followed by a series of702

fully connected layers with ReLU activations:703

Fst = δ
(
δ
(
C (Xs, Ft)W

1
f +B1

f

)
W 2

f +B2
f

)
W 3

f +B3
f , (29)

where C(·) denotes the concatenation operation, δ(·) is the704

ReLU activation, and W i
f , B

i
f (for i = 1, 2, 3) are trainable705

weight and bias parameters. This operation maps the concate-706

nated features into a joint representation space that enables707

interaction between the temporal and spatial modalities.708

Next, to produce the final fused representation F ′
st, we709

perform a soft aggregation by applying a softmax function to710

the sum of three components: linear projections of the spatial711

and temporal features, and the intermediate fused vector:712

F ′
st = softmax (Linears(Xs) + Lineart(Ft) + Fst) , (30)

where Linears(·) and Lineart(·) are learnable linear trans-713

formations specific to the spatial and temporal features, re-714

spectively, and F ′
st ∈ Rdt is the final fusion representation715

of dimension dt. The presented multi-level fusion mechanism716

allows the model to not only learn combined feature represen-717

tations but also dynamically adjust the contribution of each718

modality during prediction.719

E. The Real-time Soft-Label Correction Module720

In Section III, we described the real-time soft label correc-721

tion strategy in detail and provided a theoretical justification722

for its effectiveness. In this section, we now apply the proposed723

strategy directly within our training framework. The complete724

process is outlined in Algorithm 1.725

Algorithm 1 Real-Time Soft Label Correction Strategy
Input: Speech sample set S = SA ∪ SB , where SA ∩ SB = ∅
Output: Real-time corrected label yx

i

j

1: Fine-tune model M1(xi | θ) using clear speech samples SA to obtain
M1p

2: Integrate fine-tuned model M1p with randomly initialized model M2(xi |
θ) to form model Mp

3: Randomly shuffle samples and input speech xi ∈ S into model Mp

4: for each sample i = 1 to N do
5: Extract features: F ′

st = Mp(xi)
6: if xi ∈ SB then
7: Update label: yx

i

c = Ω(yx
i

s , F ′
st), where Ω(·) is the label update

function
8: else
9: Assign original label: yx

i

c = yx
i

cons
10: end if
11: Compute loss: Loss = L(F ′

st | Mp, yx
i

c )
12: end for

Notation clarification: For clarity, the main notations in726

Algorithm 1 are summarized as follows: θ denotes the model727

parameters; N is the total number of training samples; yx
i

j728

represents the soft-label probability of sample xi for class j;729

and Hi
st indicates the sequence features extracted from sample730

xi.731

In this algorithm, we begin by fine-tuning the network 732

M1(x
i | θ) using clear-labeled samples from SA, resulting 733

in model M1p, which captures reliable emotional tendencies. 734

This step mitigates the potential negative impact of ambiguous 735

speech during training. The complete dataset S is then passed 736

through the composite model Mp. For each input xi ∈ S, if the 737

sample belongs to the ambiguous set SB , its label is updated 738

using the real-time soft label correction function Ω(·). If the 739

sample belongs to the clear set SA, the original (hard) con- 740

sensus label is retained. Finally, the model prediction and the 741

corrected label are used to compute the loss L(F ′
st |Mp, y

xi

c ). 742

F. Classification 743

The final classification component of the proposed model 744

employs a multi-layer fully connected neural network. This 745

structure is designed to perform fine-grained learning over 746

the distributed emotional features and effectively map them 747

to discrete emotion categories. The classification process is 748

formulated as follows: 749

ŷ(xi | Mp) = softmax(ŷxi

), (31)

where ŷ(xi | Mp) denotes the predicted probability distri- 750

bution over the emotion classes for the input speech sample 751

xi, and ŷxi

represents the output of the final fully connected 752

layer based on the features extracted by the model Mp. The 753

use of the softmax function ensures that the output forms a 754

valid probability distribution over all emotion categories and 755

facilitates effective multi-class classification. 756

V. EXPERIMENTS 757

In this section, we conduct a rigourous experimental evalu- 758

ation of the proposed speech emotion recognition model and 759

report results that: (i) compare our approach to competing 760

state-of-the-art methods from the literature, (ii) explore the 761

impact of various model components through an ablation 762

study, (iii) investigate the impact of the hyperparameters α 763

and β on classification performance, (iv) study the impact of 764

the model’s learning objective, and (v) analyze the generated 765

embedding space. 766

A. Experimental Setup 767

The proposed model is implemented using PyTorch, utiliz- 768

ing a 64-bit Ubuntu 22.04 system equipped with an NVIDIA 769

RTX 3090 GPU for training and testing. 770

Table I outlines the parameter settings for the training 771

procedure. Unless otherwise specified, the soft-label correction 772

(SLC) phase adopts the same optimizer and fixed learning rate 773

(1e-5) as the fine-tuning stage. The masking probability fol- 774

lows the default configuration of the HuggingFace Wav2Vec2- 775

base-960h model. The training begins by fine-tuning the 776

Wav2Vec 2.0 model using the set of clear samples SA, 777

resulting in an intermediate model M1p. This step initializes 778

the model with a domain-specific emotional representation 779

aligned with the IEMOCAP dataset. Subsequently, M1p is 780

integrated with the null-domain module M2 to construct the 781

complete soft-label correction model Mp, which is then used to 782
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TABLE I: Parameter settings utilized during the training
procedure of the proposed speech emotion recognition model.

Name Value

α 0.3
ε 1e− 5
β 0.1

Batch size 16
Optimizer Adam

Learning rate 1e− 5
Weight decay 0.0001
Max epoch 100

Early stopping patience 16

learn the underlying emotional distribution across all samples,783

including ambiguous ones. To address class imbalance caused784

by differing frequencies of emotion categories, the inverse785

class frequency is employed as the class-wise weight in the786

loss function during training. This ensures that minority emo-787

tion classes are not underrepresented in the learning process.788

For evaluation, a Leave-One-Speaker-Out (LOSO) cross-789

validation strategy is adopted, following standard practice in790

speech emotion recognition research [14], [18]. In this setup,791

the speech data from one speaker is reserved as the validation792

set in each fold, while the remaining data is used for training.793

To ensure a comprehensive performance evaluation, two794

commonly used metrics are reported for our experiments:795

Weighted Accuracy (WA) and Unweighted Accuracy (UA)796

[40], [41]. WA reflects the overall classification accuracy797

across all utterances, accounting for class distribution, while798

UA measures the average accuracy across all emotion classes,799

treating each class equally regardless of frequency.800

B. Datasets801

Given that the primary goal of this study is to address the802

challenge of label noise and improve the model’s ability to803

learn genuine emotional distributions from potentially noisy804

annotations, the Interactive Emotional Dyadic Motion Capture805

(IEMOCAP) dataset [42] is selected for experimentation, as it806

is (to the best of our knowledge) the only publicly available807

multi-label dataset suitable for our experiments.808

The IEMOCAP dataset consists of recordings of five dyadic809

sessions involving 10 actors (5 male, 5 female) in two types810

of scenarios: scripted dialogues and spontaneous improvi-811

sations. The dataset includes rich multimodal data such as812

audio, video, and text, captured during interactive emotional813

exchanges between participants. To investigate both the ambi-814

guity inherent in emotional expression and the subjectivity of815

emotional perception, we follows the experimental protocol816

of [34], which utilizes samples from both improvised and817

scripted settings. Four commonly studied emotion categories,818

i.e., anger, happiness, sadness, and neutrality, are selected as819

the target classes for the evaluation.820

In this study, we focus on the IEMOCAP dataset because821

it aligns well with the objectives of our method and provides822

the necessary conditions for evaluation. It contains multi-label823

annotations, sufficiently ambiguous emotional samples, and824

diverse speakers that enable leave-one-speaker-out (LOSO)825

TABLE II: Dataset (IEMOCAP) partitioning used in the
experiments. SA represents clear and SB ambiguous samples.

Session Session 1 Session 2 Session 3 Session 4 Session 5

SA 1316 1248 1324 1216 1494

SB 726 801 973 1059 890

validation to examine model generalization. Hence, we adopt 826

IEMOCAP as the benchmark corpus to ensure both experi- 827

mental feasibility and fair comparison with prior work. 828

C. Data preprocessing 829

Inspired by the findings in [43], we observe that speech seg- 830

ments with a duration of 7 seconds typically contain sufficient 831

information for effective emotion recognition. Therefore, we 832

segment utterances longer than 7 seconds into fixed 7-second 833

intervals. For shorter utterances, particularly those less than 834

1.5 seconds in length, which we found to be suboptimal for 835

processing by the Wav2Vec 2.0 model, we apply zero-padding 836

to extend them to at least 1.5 seconds. To ensure that emotional 837

cues are preserved and properly learned by the model, we 838

apply zero-padding at the end of the audio rather than at the 839

beginning or middle. After applying these preprocessing steps, 840

we partition the dataset as detailed in Table II. 841

During the feature extraction stage, we convert all original 842

speech signals to digital form at a 16 kHz sampling rate. We 843

apply pre-emphasis filtering to amplify high-frequency com- 844

ponents, which are often critical for emotion-related spectral 845

features. We then compute logarithmic Mel filter bank (MFB) 846

energy features [44], [45], using 40 Mel filters, a 40 ms 847

Hamming window, and a 10 ms frame shift. These features 848

serve as input to our models for both training and evaluation. 849

D. Comparison Methods 850

To rigorously evaluate the proposed method, we select a 851

range of state-of-the-art models for comparatison, all of which 852

explicitly address the challenge of speech ambiguity. The 853

goal of the comparitive analysis is to highlight the superior 854

performance and notable advantages of our model in handling 855

ambiguous speech. 856

The baseline models considered in our experiments take 857

different strategies to mitigate the negative impact of emotional 858

ambiguity in speech emotion recognition and can be broadly 859

categorized into three groups: (i) models that enhance dataset 860

reliability [28], [29] or exploiting multiple feature represen- 861

tations [30], (ii) models that directly utilize the observation 862

labels of ambiguous speech without further label refinement 863

[14], [31], and (iii) models that update ambiguous observation 864

labels before training to better model true emotional distribu- 865

tions [13], [34]. 866

It is worth noting that other studies have explored speech 867

emotion recognition based solely on single-label strategies 868

[27], [46]. These works tend to neglect the intrinsic ambiguity 869

and complexity of emotional expression in speech and are, 870

therefore, not considered in this work. Similarly, models 871

leveraging fusion techniques accross different modalities (e.g., 872
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speech and text) [47], [48] attempt to compensate for the873

mabiguity by introducing auxiliary information. However,874

their focus diverges significantly from the present study, which875

is dedicated to resolving emotional ambiguity strictly within876

the speech modality. As such, methods that either ignore877

emotional ambiguity or introduce additional modalities are878

excluded from our comparisons.879

The following models are included in our evaluation:880

● Co-teaching (2021): A progressive co-teaching frame-881

work that uses loss values to estimate sample difficulty,882

gradually training the model from simple to hard samples883

to mitigate issues with early-stage interference caused by884

emotionally ambiguous speech [30].885

● Attention-LSTM-Attention (2020): A SER model com-886

bining attention mechanisms and LSTMa to extract emo-887

tional features across both temporal and feature dimen-888

sions. This approach constructs a derived dataset from889

IEMOCAP, distinguishing between clear and ambiguous890

samples to evaluate the dataset’s reliability and its impact891

on model performance [29].892

● LLMs (2024): A method that synthesizes emotionally893

rich speech data using large language models (LLMs)894

combined with IEMOCAP and student speech datasets.895

Transformer-based architectures are used for spatial fea-896

ture extraction to enhance data reliability. [28].897

● Soft-target Training (2018): A soft-label training898

method that adjusts soft label representations to effec-899

tively utilize ambiguous speech samples without domi-900

nant consensus labels [31].901

● Inter-class Difference Loss (2023): A multi-label train-902

ing approach that introduces an inter-class difference loss903

function that enabled the network to automatically learn904

the distribution of emotions by emphasizing differnces905

between emotion categories. [14].906

● Emotion Existence (2019): A method that first estimates907

the presence or absence of each emotion in speech sam-908

ples using multiple labels and then refines the estimates909

with soft labels to resolve emotional ambiguity [13].910

● Meta-learning (2020): A meta-learning framework that911

performs real-time correction of noisy labels and es-912

timates sample contribution weights, aiming to correct913

ambiguously labeled samples and reduce their negative914

impact during model training [34].915

● AMSNet (2023): A multi-scale attention-based frame-916

work designed to enhance the discriminative power of917

speech emotion representations. The framework employs918

segment-level feature refinement and hierarchical atten-919

tion to improve robustness against ambiguous emotional920

expressions [49].921

● STACN (2025): A sparse temporal aware capsule net-922

work designed to improve robustness against ambiguous923

or noisy emotional labels by integrating sparse temporal924

modeling, multi-head attention, and capsule-based feature925

routing, achieving stable performance in speech emotion926

recognition tasks [50].927

TABLE III: Comparison with the state-of-the-art. The
proposed model leads to the best overall performance both
in terms of WA and UA.

Method Label
Train set Metrics

Clear Ambiguous WA (%) UA (%)

Co-teaching (2021) [30] Consensus
√

- 62.3 -
Attention-LSTM (2020) [29] Consensus

√ √
67.7 65.1

LLMs (2024) [28] Consensus
√

- - 66.6

Soft-target (2018) [31] Soft

√
- 58.5 57.4

-
√

53.6 54.0
√ √

62.6 63.7

Inter-class (2023) [14] Multi

√
- 66.0 63.9

-
√

60.5 61.7
√ √

68.3 66.2

Emotion existence (2019) [13] Multi & Soft
√ √

66.1 65.4

Meta-learning (2020) [34] Update Consensus
√

- 65.9 61.4

AMSNet (2023) [49] Multi
√ √

69.2 70.5

STACN (2025) [50] Multi
√ √

68.8 -

Proposed model (ours) Update soft
√ √

70.3 71.3

E. Comparisons with State-Of-The-Art Methods 928

In the first set of experiments, we compare the proposed 929

model with competing state-of-the-art (SOTA) SER models 930

from the literature. We train our models on either clear, 931

ambiguous or both types of samples (depending on the ca- 932

pabilities of the model), as detailed in Table III. To ensure 933

a fair comparison, the results of other baseline methods are 934

directly cited from the corresponding literature. From the 935

presented results, it can be seen that the proposed model 936

demonstrates superior performance over all considred methods 937

in both weighted accuracy (WA) and unweighted accuracy 938

(UA), achieving a WA score of 70.3% and UA score of 71.3. 939

SOTA Comparison. Compared to models that focus on 940

enhancing dataset reliability or leveraging different feature 941

representations, our method delivers consistent improvements. 942

Specifically, relative to Attention-LSTM-Attention (2020) 943

[29], we observe a 2.6% point gain in WA and a 6.2% point 944

gain in UA. Compared to LLMs [28], our model achieves a 945

4.7% point improvement in UA. These results highlight that 946

dataset augmentation alone does not sufficiently resolve the 947

label noise caused by subjective annotation errors. In compar- 948

ison to Co-teaching [30], we observe an 8.0% point increase in 949

WA. This improvement can be attributed to our model’s ability 950

to capture fine-grained spatial-temporal information through a 951

dedicated network structure, as well as the dynamic adjustment 952

of ambiguous labels during training. 953

When comparing to models that directly use observation 954

labels of ambiguous speech without correction, our model also 955

exhibits clear advantages. For instance, compared with Soft- 956

target training [31], our approach improves WA and UA by 957

7.7% and 7.6% points, respectively. This is largely due to 958

our real-time correction strategy, which reduces dependence 959

on potentially inaccurate observation labels. Compared with 960

Inter-class Difference Loss [14], we achieve 2.0% and 5.1% 961

points improvements in WA and UA, respectively. These gains 962

demonstrate the effectiveness of balancing the contributions 963

of original soft labels and model-generated labels via the 964

correction coefficient α. 965

In terms of label correction approaches, our model also 966
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TABLE IV: Performance statistics across LOSO folds. Mean,
standard deviation, and 95% confidence intervals are reported.

Metric Mean (%) Std (%) 95% CI (%)

WA 70.32 ±3.02 [68.16, 72.49]
UA 71.30 ±3.34 [68.91, 73.69]

Fig. 5: Confusion matrix of the proposed model under
one LOSO fold. The figure illustrates the per-class recogni-
tion performance, indicating that the model performs reliably
across different categories, with noticeable confusions mainly
between Happiness/Sadness and Neutrality.

outperforms existing methods. Compared to Emotion Exis-967

tence [13], we observe improvements of 4.2% points in WA968

and 5.9% points in UA. This suggests that our method better969

captures the emotional nuances in speech samples lacking a970

discrete consensus label. Similarly, when compared with Meta-971

learning [34], our model shows substantial improvements, i.e.,972

4.4% points in WA and 9.9% pints in UA—due to its ability973

to produce a smoother convergence path and to leverage a974

broader set of ambiguous samples during training.975

Detailed Model Analysis. To further assess the robustness of976

the reported improvements over the state.of-the-art, Table IV977

reports the mean, standard deviation, and 95% confidence978

intervals across the 10 LOSO folds. Specifically, our model979

achieves WA = 70.32 ± 3.02% (95% CI: [68.16, 72.49]) and980

UA = 71.30 ± 3.34% (95% CI: [68.91, 73.69]), demonstrating981

that the gains are consistent and statistically significant.982

In addition to the standard WA and UA metrics, we also983

report several supplementary indicators to provide a more984

comprehensive assessment of the proposed model. These indi-985

cators are summarized in Table V, which presents macro and986

weighted versions of precision, recall, and F1-score. Together,987

these metrics reflect class-balanced performance, robustness988

under class imbalance, and the overall discriminative ability989

of the model.990

To further illustrate the per-class recognition performance,991

we show in Fig. 5 the confusion matrix of the proposed992

model under a randomly selected LOSO fold. The results993

indicate that the model performs relatively consistently across994

most categories, with noticeable confusions mainly between995

Happiness/Sadness and Neutrality.996

TABLE V: Additional performance metrics of the proposed
model. To provide a more comprehensive evaluation as sug-
gested by the reviewers, we report F1-score, weighted F1-
score, macro/weighted precision, and macro/weighted recall
of the proposed method.

Metric Value (%)

F1-score (macro) 70.78
F1-score (weighted) 68.33
Precision (macro) 72.04
Precision (weighted) 70.97
Recall (macro) 71.59
Recall (weighted) 68.31

TABLE VI: Inference efficiency of our model measured on
a single NVIDIA RTX 3090 GPU (batch size=1). Latency is
averaged over 100 runs. RTF = real-time factor.

Input length (s) FLOPs (G) Latency (ms) RTF Peak Mem (GB)

1.00 6.95 4.44±0.05 0.004 4.37
1.20 8.37 4.76±0.02 0.004 4.39
1.60 11.21 5.16±0.02 0.003 4.41
1.94 13.64 5.66±0.04 0.003 4.45

F. Inference Efficiency 997

Beyond recognition accuracy, we also evaluate the inference 998

efficiency of our model, as real-time performance is essen- 999

tial for HCI applications. Table VI summarizes the FLOPs, 1000

inference latency, real-time factor (RTF), and peak memory 1001

consumption across different input lengths. The RTF is simply 1002

obtained by dividing the inference time by the input audio 1003

duration. Our measurements show that the model achieves effi- 1004

cient inference with moderate GPU memory usage (∼4.4GB), 1005

demonstrating its suitability for practical deployment. It should 1006

be noted that publicly available code resources for related 1007

approaches are very limited, and most prior works do not 1008

report detailed efficiency statistics, which further highlights 1009

the contribution of our analysis. 1010

G. Ablation Analysis 1011

The comparative analysis presented in the previous section 1012

demonstrates that our proposed model outperforms existing 1013

approaches in handling ambiguous speech. In the next series 1014

of experiments, we conduct a series of ablation studies to 1015

better understand the impact of individual model components 1016

and learning objectives. While spatio-temporal models have 1017

been extensively explored in prior research, we focus our 1018

ablation studies on the main contributions of this, such as the 1019

real-time soft label correction module and associated learning 1020

objectives. Specifically, in the ablation studies, we explore: 1021

(i) the impact of the spatio-temporal network module, (ii) 1022

the influence of the soft label correction coefficient α and the 1023

margin control coefficient β, and (iii) the effect of different 1024

loss combinations in the overall learning objective. 1025

Impact of the Spatio-Temporal Module. Table VII presents 1026

an analysis of the contributions of different architectural 1027

modules on the recognition performance of our model on the 1028
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TABLE VII: Ablation study exploring the impact of different
model components, i.e., features used in the fusion module.

Impact analysis of multiple fusion modules

Fold

Spatial-only
model

Temporal-only
model

Spatial-temporal
integrated model

Spatial-temporal
multi-fusion model

WA (%) UA (%) WA (%) UA (%) WA (%) UA (%) WA (%) UA(%)

1 45.1 44.0 70.3 70.4 68.6 69.9 69.6 71.0
2 51.1 55.2 66.3 66.7 68.4 68.6 69.8 70.9
3 44.6 44.9 69.0 72.8 68.8 73.1 73.0 75.5
4 54.3 53.2 73.4 73.4 70.7 70.1 74.6 76.2
5 50.1 49.9 64.8 64.7 64.3 64.9 66.7 67.6
6 48.8 47.3 66.8 66.2 68.0 67.5 68.6 68.1
7 39.5 35.8 62.9 64.0 62.6 63.5 65.4 66.6
8 46.6 49.5 70.5 70.0 69.6 70.0 73.7 72.7
9 47.8 50.4 68.9 69.4 70.2 69.8 69.7 70.0

10 38.1 41.8 70.1 71.4 70.8 70.6 72.2 74.4

Average 46.6 47.2 68.3 68.9 68.2 68.7 70.3 71.3

IEMOCAP dataset. The results indicate that the spatial-only1029

model performs significantly worse than other configurations,1030

highlighting its inability to capture temporal dynamics, an1031

essential component for emotion recognition. In contrast, the1032

temporal-only model achieves performance closer to the full1033

spatial-temporal model, suggesting that temporal features play1034

a more dominant role in our overall framework. However, the1035

best performance is observed with the spatial-temporal multi-1036

fusion model, which leverages the complementary strengths of1037

both spatial and temporal representations. This result confirms1038

the effectiveness of jointly modeling spatial and temporal1039

feature interactions for improved emotion classification.1040

Impact of Hyperparameters α and β. Table VIII shows1041

the influence of different correction coefficients α and margin1042

control coefficients β on model training. To determine the opti-1043

mal settings for these hyperparameters, we adopt a controlled1044

variable approach by tuning one parameter at a time while1045

holding the other constant. We begin by fixing β = 0.1 and1046

varying α to observe its influence on performance. Results1047

show that the model achieves the strongest performance when1048

the value of α equals α = 0.3.1049

Subsequently, keeping α = 0.3 fixed, we evaluate different1050

values of β and find that β = 0.1 yields the highest perfor-1051

mance. As shown in Table VIII, using α = 0.3 and β = 0.11052

results in 0.2% points improvement in both weighted accuracy1053

(WA) and unweighted accuracy (UA) compared to using α = 01054

with the same β. This performance gain is attributed to the1055

presence of noise in the observation labels of ambiguous1056

speech, and the ability of α to balance the influence between1057

observed and model-generated labels. Additionally, we see that1058

setting α = 0 disables the online correction process and forces1059

the model to rely solely on static soft labels. As shown in1060

Table VIII, this leads to a drop in both weighted accuracy1061

(WA) and unweighted accuracy (UA), indicating that updating1062

of ambiguous labels in real-time contributes positively to the1063

overall performance. This confirms that the iterative, online1064

correction mechanism plays an essential role in mitigating the1065

impact of annotation ambiguity. Furthermore, we observe that1066

increasing β beyond 0.1 (with α = 0.3) leads to a decline in1067

model performance. This is likely because an excessively large1068

margin coefficient suppresses valuable prediction signals from1069

TABLE VIII: Sensitivity analysis with respect to the correc-
tion coefficient α and margin control coefficient β.

α(β = 0.1) WA (%) UA (%) β(α = 0.3) WA (%) UA (%)

0 69.5 70.6 0 69.8 71.0
0.1 69.8 71.0 0.1 70.3 71.3
0.2 69.8 70.1 0.2 70.0 70.7
0.3 70.3 71.3 0.3 69.6 70.4
0.4 69.8 71.1 0.4 69.5 70.7
0.5 69.7 70.9 0.5 69.7 70.7
0.6 69.5 70.9 0.6 69.3 70.2
0.7 70.0 70.7 0.7 69.3 70.6
0.8 69.6 70.9 0.8 69.4 70.3
0.9 69.4 70.6 0.9 69.2 70.5

emotion-positive categories, thereby reducing the effectiveness 1070

of the correction mechanism. 1071

Impact of Loss Functions. Table IX presents an analysis 1072

of model performance under different combinations of loss 1073

functions. To ensure consistency and fairness in the ablation 1074

experiments, we fix the correction coefficient to α = 0.3 and 1075

the margin control coefficient to β = 0.1. Additionally, Fig. 6 1076

provides t-SNE visualizations, illustrating the distribution of 1077

emotional features learned under each loss configuration. 1078

From the results in Table IX, we observe that both the cross- 1079

entropy loss Lcor and the enhanced inter-class difference loss 1080

LIc contribute most effectively when used in their respective 1081

roles, i.e., Lcor as the primary loss function for training on 1082

clear speech samples, and LIc as a regularization term for 1083

correcting soft labels in ambiguous samples. Compared to 1084

using either Lcor or LIc alone for both training and correction, 1085

the combined loss function improves weighted accuracy (WA) 1086

by 0.1% and 0.7% points, and unweighted accuracy (UA) by 1087

0.3% and 0.9% points, respectively. 1088

These results can be attributed to the complementary nature 1089

of the two loss functions. While Lcor is well-suited for opti- 1090

mizing predictions on clearly labeled data, it lacks the ability 1091

to effectively handle ambiguity in soft labels. In contrast, LIc 1092

is designed to increase inter-class separability in emotionally 1093

ambiguous samples but provides limited benefit for already 1094

well-separated clear samples. As previously observed in Ta- 1095

ble VIII, excessively increasing the boundary margin via β can 1096

actually degrade performance, particularly on clear samples 1097

where emotional boundaries are already well-defined. Thus, 1098

employing a hybrid loss function that combines both Lcor and 1099

LIc allows the model to capitalize on the strengths of each: 1100

robust learning from clear data and improved label correction 1101

for ambiguous cases. 1102

t-SNE Visualizations. Figure 6 presents a t-SNE visualization 1103

of the learned emotion representations under the four training 1104

configurations. As can be seen, the degree of emotional 1105

clustering follows the pattern: (c) > (a) > (b) > (d). This 1106

pattern highlights the effectiveness of the soft label correction 1107

strategy in mitigating the negative impact of label noise in 1108

ambiguous speech, which otherwise misguides model training. 1109

A closer comparison between subfigures (c) and (a) reveals 1110
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TABLE IX: Ablation study with respect to the components
of the overall learning objective.

Fold
Lcor and Lcor LIc and LIc Lcor and LIc

WA (%) UA (%) WA (%) UA (%) WA (%) UA (%)

1 70.4 70.7 69.0 70.3 69.6 71.0
2 68.5 70.1 68.7 69.5 69.8 70.9
3 71.5 75.3 71.2 74.8 73.0 75.5
4 74.3 75.4 70.5 71.8 74.6 76.2
5 66.7 67.2 65.2 65.8 66.7 67.6
6 67.7 65.9 70.3 69.6 68.6 68.1
7 65.0 67.6 65.9 67.4 65.4 66.6
8 74.9 72.4 73.0 71.1 73.7 72.7
9 70.5 71.3 71.7 70.7 69.7 70.0

10 72.2 74.5 70.5 72.6 72.2 74.4

Average 70.2 71.0 69.6 70.4 70.3 71.3

that emotion clusters in (a) are more scattered and distributed1111

in four distinct directions, consistent with the results in Ta-1112

ble IX. This observation supports the conclusion that the cross-1113

entropy loss function alone lacks sufficient discriminative1114

power for ambiguous emotion categories. Further comparisons1115

between (c) and (b) show that although (b) exhibits a larger1116

inter-class margin, the distribution of neutral emotions is more1117

diffuse and significantly overlaps with other categories. This1118

suggests that while LIc effectively increases inter-class sepa-1119

ration, it can simultaneously introduce confusion—particularly1120

for more ambiguous emotion types such as neutrality. Lastly,1121

in comparing (c) and (d), we observe that the clusters corre-1122

sponding to happiness, anger, and neutral emotions in (c) are1123

more compact and well-separated. This demonstrates that soft1124

label correction on ambiguous speech samples helps guide the1125

model to better capture the underlying emotional distribution.1126

VI. SUMMARY1127

In this paper, we proposed an enhanced ambiguous speech1128

emotion recognition model to address several key challenges in1129

the field: the over-reliance on subjectively annotated labels, the1130

disregard for proportional differences among emotions within1131

multi-label annotations, and the underutilization of speech1132

samples lacking dominant consensus labels. Our model in-1133

tegrates Convolutional Neural Networks (CNN) and Wav2Vec1134

2.0 to jointly capture spatial and temporal characteristics of1135

speech, with a multi-level fusion mechanism that adaptively1136

balances these features for more effective representation. A1137

key contribution of the proposed approach is the introduction1138

of a real-time soft label correction strategy, specifically de-1139

signed to handle ambiguous labels by dynamically refining1140

them during training. This helps reduce the adverse effects1141

of noisy annotations on model convergence. This novel real-1142

time refinement mechanism distinguishes our approach from1143

existing soft-label or offline correction approaches, thereby1144

strengthening the overall novelty of our method. We also1145

provided a formal mathematical proof of the feasibility and1146

effectiveness of the proposed correction mechanism. Extensive1147

experiments conducted on the IEMOCAP dataset confirmed1148

the superiority of our method, yielding improvements of 2.0%1149

(a) Lcor and Lcor (b) LIc and LIc

(c) Lcor and LIc (d) Lcor (α = 0)

Fig. 6: t-SNE plots for different loss combinations with
α = 0.3, β = 0.1: (a) Lcor is used for both model training
and soft label correction; (b) Enhanced LIc is used for both
model training and soft label correction; (c) Enhanced LIc

is used for soft label correction and Lcor is used for model
training; (d) No soft label correction is applied (α = 0), Lcor

is used for training, and β is unrestricted.

points in weighted accuracy (WA) and 4.7% in unweighted 1150

accuracy (UA) over existing state-of-the-art approaches. Fur- 1151

thermore, ablation studies on the real-time soft label correction 1152

module highlighted its critical role in enhancing model per- 1153

formance and provided deeper insights into its contribution. 1154
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Vitomir Štruc is a Full Professor at the University1378

of Ljubljana, Slovenia, and an expert on computer1379

vision and machine learning. He has co-authored1380

over 200 papers in leading international journals1381

and conferences. Vitomir serves as Deputy Editor-in-1382

Chief of IEEE T-IFS, Subject Editor for Signal Pro-1383

cessing, and Associate Editor for Pattern Recogni-1384
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