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Abstract—Speech represents a fundamental medium for con-
veying human emotions and, as a result, speech-based emotion
recognition (SER) systems have become pivotal in advancing
human-computer interaction (HCI) across a range of applica-
tions. While significant progress has been made in speech emotion
recognition over recent years, existing solutions still face several
key challenges, in that they: (i) rely excessively on subjectively
annotated (discrete) labels during training, (i7) often overlook the
label ambiguity of speech samples that express more than one
class of emotions, and (7i7) underutilize unlabeled or ambiguous
speech, for which typically a label distribution (or so-called soft
labels) is available. To address these issues, we propose in this
paper a novel SER model that explicitly handles ambiguous
speech samples and overcomes the shortcomings outlined above.
Central to our approach is a novel real-time soft-label correction
strategy designed to refine the annotations assigned to ambiguous
speech. The proposed model leverages both, (explicitly) labeled
as well as ambiguous samples and applies the dynamic soft-label
correction strategy alongside an enhanced inter-class difference
loss function to iteratively optimize the label distributions during
training. We theoretically demonstrate that our method is capable
of approximating the true emotional distribution of speech even
in the presence of label noise, suggesting that utilizing ambiguous
speech samples without explicit emotion labels still contributes
toward more effective emotion recognition. Furthermore, we
integrate the representational power of convolutional neural
networks (CNNs) with the contextual modeling capabilities of
Wav2Vec 2.0 to enable a comprehensive extraction of spatio-
temporal speech features. Experimental results on the IEMOCAP
multi-label dataset confirm the effectiveness of our approach,
achieving state-of-the-art performance with significant improve-
ments in weighted accuracy (WA) and unweighted accuracy (UA)
over competing methods.

Index Terms—Speech emotion recognition, ambiguous speech,
soft labels, real-time correction, spatio-temporal analysis
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I. INTRODUCTION

Speech is one of the most natural ways of human communi-
cation that can directly express intentions and even emotional
states. The process of using computer technology to analyze
sound features from speech signals and infer the speaker’s
emotional state is commonly referred to as speech emotion
recognition (SER) [1]-[3]. Speech emotion recognition has
transitioned from a specialized research area to a significant
component of human-computer interation (HCI) [4], capable
of enhancing user experience in various application domains
[5], ranging from call-center conversations and in-vehicle
vehicle driving systems to smart-home application and smart
healthcare among others [6].

Currently, most speech emotion recognition methods mainly
rely on explicit (hard) labels for model training [7], [8], where
each speech sample is assigned a single, discrete emotion
category. While such methods have achieved notable success,
they fall short in capturing the complexity of emotional ex-
pression in real-world scenarios, where speech often conveys
multiple overlapping emotions. For instance, an utterance la-
beled as ”sad” may concurrently also convey feelings of anger
and disappointment [9]. This illustrates the inherent ambigu-
ity and subjectivity present in emotional expression through
speech [10]. Moreover, emotional perception in speech can
also vary significantly across annotators due to individual
differences in cultural background, gender, age, and other
similar factors, suggesting that emotion perception is inher-
ently subjective [11]. Consequently, SER methods that rely on
single-label annotations not only fail to account for the ambi-
guity in emotional expression but also overlook the impact of
subjective cognitive biases among annotators, which is one of
the primary sources of label noise in emotion datasets [12].

To address the limitations of single-label annotation, recent
research has increasingly explored multi-label approaches for
speech emotion recognition [13], [14]. Multi-labeled methods
leverage sets of emotion categories identified by multiple
annotators to represent the presence of various emotions within
a single utterance. While such approaches better capture the
multifaceted nature of emotional expression, they still fall
short in modeling the relative prominence of each emotion. In
practice, speech often conveys a mixture of emotions, with one
dominant emotion prevailing within the overall mixture. Tradi-
tional multi-label techniques are typically unable to represent
these proportions effectively. To mitigate this issue, researchers
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have introduced soft-label strategies [15], [16], where the
distribution of annotator votes is used to assign weights to
each emotion category, offering a more nuanced description of
emotional content of the analyzed speech samples. However,
such a soft-label approaches still heavily rely on the subjective
judgments of a limited pool of annotators, and as a result,
may introduce significant statistical noise and inconsistencies,
which pose a considerable challenge for reliable training of
speech emotion recognition (SER) models.

Furthermore, several studies have investigated the use of
ambiguous speech samples for emotion recognition through
multi-classifier interaction learning [17] and joint-learning
[18] frameworks in an attempt to mitigate the limitations
of multiple and soft labels by allowing the model to infer
emotional distributions directly from the data. However, such
approaches typically overlook speech samples that lack dom-
inant emotions, i.e., samples that inherently carry the most
ambiguity. In practice, the subjectivity of emotion perception
and the ambiguity of emotional expression are most evident in
these unlabeled or weakly labeled instances, where annotators
are less likely to agree on a dominant emotion due to unclear
affective cues [19]. This leads to inconsistencies in annotations
and challenges in model training. Moreover, in real-world
scenarios, it is common for speech utterances to lack a clearly
dominant emotion that is agreed upon by a majority of
annotators. As a result, existing methods that depend solely
on speech samples with consensus labels fail to capture the
full complexity of emotional ambiguity and do not adequately
address the inherent uncertainty present in natural speech.

To address the above challenges, we propose in this paper
a novel model for speech emotion recognition that explicitly
targets the inherent uncertainty and ambiguities in emotional
speech. Our approach simultaneously incorporates both un-
labeled examples as well as samples with explicit discrete
labels during training. Labeled samples provide supervision
to guide the learning process, while ambiguous samples
are iteratively refined using a soft label update mechanism
in conjunction with an enhanced inter-class difference loss
function. This enables the model to dynamically correct and
learn from emotionally ambiguous data. Unlike existing SER
methods that rely on static soft labels, sample reweighting,
or offline label preprocessing, our model performs real-time,
model-driven correction of ambiguous label distributions and
jointly optimizes label refinement and representation learning
within a single end-to-end framework. Moreover, we provide
a theoretical analysis showing that this dynamic correction
process guides the model toward the underlying true emo-
tional distribution despite noisy or subjective annotations.
Experimental results demonstrate that our method outperforms
existing state-of-the-art approaches, particularly in its ability
to effectively handle the ambiguity and subjectivity inherent in
real-world speech emotion recognition. In summary, we make
the following contributions in this paper:

1) We propose a novel speech emotion recognition (SER)
approach, designed specifically to handle ambiguous
speech, that addresses some of the key limitations of
existing SER models, including the over-reliance on
subjectively annotated labels, neglect of emotional distri-

butions, and the underutilization of ambiguous samples
lacking explicit (hard, consensus) emotion labels.

2) We introduce a real-time soft label correction strategy,
theoretically validated to guide the model toward learning
the true emotional distribution, even in the presence of
label noise. This strategy offers a generalizable solution
for other tasks involving noisy/ambiguous annotations.

3) We construct a comprehensive spatial-temporal feature
extraction pipeline by combining the representational
strengths of CNNs and Wav2Vec 2.0. Through a novel
multi-level fusion mechanisms, our model effectively in-
tegrates time-frequency emotional cues for robust speech
emotion recognition.

It should be noted that in this work, the term spatial specif-
ically refers to the frequency dimension of the spectrogram,
which can be treated analogously to the spatial axis in image
processing when applying 2D-CNNs. The term temporal corre-
sponds to the time dimension, capturing the dynamic evolution
of speech signals.

II. RELATED WORK

In this section, we now discuss relevant prior work related to
the research presented in this paper. For a more comprehensive
coverage of the area of speech emotion recognition (SER), the
reader is reffered to some of the excellent surveys available in
the literature on this topic, i.e., [6], [20]-[23].

Early work in speech emotion recognition (SER) primarily
relied on single-label annotations derived through majority
voting (i.e., consensus labels hereafter) across annotators. To
better exploit the spatio-temporal characteristics of speech sig-
nals, Ye et al. [24] introduced a time-aware bidirectional scal-
ing network designed to integrate information from both past
and future contexts, thereby enhancing the model’s contextual
representation capabilities. Li et al. [25] proposed a model that
combines a spatiotemporal attention mechanism with a large-
horizon learning strategy built on a CNN backbone, effectively
localizing emotional regions while mitigating feature overlap.
Building on this idea, Wu et al. [26] replaced attention mod-
ules with a capsule network to improve recognition accuracy
by capturing hierarchical relationships among features. Gan et
al. [27] developed a spatial-temporal network that integrates
features through multiple fusion strategies, achieving strong
performance in capturing both spatial and temporal cues.

While the studies outlined above have significantly ad-
vanced SER through various modeling strategies in the spatial,
temporal, and joint domains, they generally do not address
the issue of ambiguous emotional expressions in speech. To
indirectly tackle this problem, Wang et al. [28] leveraged
large language models (LLMs) to generate emotionally rich
synthetic speech data based on a student speech dataset,
while Yu et al. [29] applied an Attention-LSTM-Attention
architecture to augmented datasets, aiming to enhance label
robustness and alleviate ambiguity-related challenges. Several
studies have also looked at the model architecure to reduce
the impact of speech ambiguity on emotion recognition. Fan
et al. [8], for example, introduced an Individual Standardized
Network (ISNet) that addresses inter-individual variability in
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emotional expression and, thus, aims to reduce confusion
caused by personalized affective patterns. Yin et al. [30]
proposed a progressive co-teaching strategy inspired by human
and animal learning processes, where the model is trained on
samples of increasing complexity (from simple to ambiguous)
to mitigate the negative influence of emotionally ambiguous
data on training stability. While these approaches acknowledge
the challenges posed by emotional ambiguity, they still mostly
rely on single-label annotations and, in turn, fail to capture
the nuanced, multi-dimensional nature of emotional expression
in speech. As a result, these methods suffer from inadequate
feature representation, limiting their ability to fully model the
complexity of real-world emotional speech.

Recognizing the limitations of single-label approaches, sev-
eral studies have proposed alternative labeling strategies to
better capture the inherent ambiguity in emotional speech.
These efforts aim to model the coexistence of multiple emo-
tions within an single utterance and account for inter-annotator
variability in emotion perception. Li et al. [14], for instance,
employed multiple labels as the ground truth for model
training and introduced an inter-class difference loss function
to reduce the similarity between emotion classes, thereby
facilitating more accurate modeling of emotion distributions.

However, while such multi-label approaches can indicate the
presence or absence of emotions, they often fail to distinguish
between dominant and subordinate emotions in speech sam-
ples, which is critical when dealing with ambiguous speech.
The seminal work of Steidl et al. [15] introduced soft labels,
which reflect the proportion of annotator votes across emotion
categories to capture perceptual ambiguity more precisely and
addressed this problem. The authors also showed that the
entropy of these soft labels closely aligns with the entropy
of labels generated by an artificial/simulated annotator, sug-
gesting that such soft labels effectively capture the annotators’
perception of ambiguous emotions. Despite this advancement,
most studies employing soft labels rely directly on observed
annotator distributions, failing to account for the underlying
subjectivity and variability in human emotion perception. As
a result, these approaches risk embedding annotator bias into
the training process, which may distort the model’s ability to
learn the true emotional content. To address this issue, Fayek
et al. [11] proposed modeling individual annotators separately
and integrating their outputs to generate more robust multi-
label representations. Building on this line of work, Ando
et al. [31] successfully incorporated speech samples lacking
a single (discrete, consensus) label by modifying the soft-
label representation to accommodate ambiguous expressions.
Subsequently, Ando er al. [13] extended this framework by
leveraging soft labels over multi-label annotations in repeated
training runs, enabling a more comprehensive use of the full
dataset, including emotionally ambiguous samples. Neverthe-
less, even these methods fall short of fully addressing anno-
tator subjectivity, where individual perceptions may diverge
significantly from the consensus, thus, introducing label noise
that can mislead the model and compromise its ability to learn
accurate emotional distributions.

In response to the challenges posed by label noise, Wang
et al. [32] proposed a unified two-stage framework, con-

sisting of labels noise modeling and correction training, to
address different types of label noise in image classification
tasks. Building on this concept, Liu et al. [33] introduced a
validation-based mechanism to determine whether labels in
the training set should be revised and demonstrated improved
model robustness through selective label correction. Inspired
by these label correction strategies, Fujioka er al. [34] applied
a meta-learning approach that combines corrected labels with
sample weight estimation to update noisy annotations.

In the context of speech emotion recognition, Mao et al.
[35] observed that static soft labels fail to capture the dynamic
nature of emotional expression, and, thus, proposed an emo-
tion profile refinement strategy that generates soft labels in
real time to better represent emotional evolution in speech.
While these approaches mark significant progress in SER,
they still largely neglect samples without consensus labeles,
i.e., samples that are most representative of the ambiguity
and uncertainty inherent in natural emotional speech. Ignoring
such traning samples limits the ability of classification models
to learn comprehensive and robust emotional representations.
Beyond these general label correction strategies, recent works
have introduced meta-learning and co-teaching frameworks
directly into speech emotion recognition (SER). For example,
Yin et al. [36] proposed a progressive co-teaching approach
to mitigate the impact of emotionally ambiguous labels by
iteratively exchanging reliable samples between peer networks.
Chopra et al. [37] and Cai et al. [38] further explored
meta-learning paradigms for low-resource or multi-task SER,
showing that adaptive reweighting of uncertain annotations
can improve robustness. However, these approaches mainly
rely on sample reweighting or selection, while leaving the
underlying label distributions unchanged, which may limit
their effectiveness for inherently ambiguous emotional speech.

Inspired by the research discussed above, we propose in this
paper a novel model for ambiguous speech emotion recogni-
tion. At the core of our approach is an innovative real-time
soft label correction strategy, specifically designed to handle
emotionally ambiguous speech samples. We theoretically and
empirically demonstrate that this strategy effectively captures
the underlying emotional distribution, even in the presence of
noisy or unreliable labels. Furthermore, we leverage the rep-
resentational power of convolutional neural networks (CNNs)
alongside the contextual learning capabilities of Wav2Vec 2.0
to perform a detailed analysis of the speech signal’s spa-
tiotemporal characteristics. By employing multi-level feature
fusion, our model efficiently integrates these representations,
and allows for a robust and comprehensive understanding of
speech emotions.

III. SOFT-LABEL CORRECTION STRATEGY

A key component of the speech emotion recognition model
proposed in this work is a novel soft-label correction strat-
egy, designed specifically to account for the ambiguity of emo-
tional speech and emotion perception from the annotators. In
this section, we first motivate the need for soft-label correction
and then theoretically show that soft-label correction leads to
better ground truth and, in turn, better recognition models.
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A. Problem Description

The variability in individual emotion perception typically
leads annotators to assign different emotional labels to the
same speech sample, resulting in samples that are annotated
with multiple labels. In most existing speech emotion recog-
nition (SER) methods, the prevailing approach is to adopt the
emotion category with the highest number of votes as the
final (consensus) label for the utterance. However, this practice
introduces two key limitations:

1) Human speech frequently conveys a mixture of emotions,
and majority-vote labeling fails to capture the nuanced
and overlapping emotions inherent in natural speech.

2) Due to the subjectivity of human emotion perception,
annotators often struggle to reach consensus, leading to
uncertainty and ambiguity in soft-label distributions.

We propose a real-time soft label correction strategy that
leverages the emotional features extracted through spatiotem-
poral neural networks. This strategy is designed to more
accurately model the subtle emotional variations in speech
while reducing the impact of noisy or ambiguous labels that
could negatively affect model performance. Additionally, we
provide a theoretical foundation to support the effectiveness of
the proposed correction mechanism in learning more reliable
emotional representations.

B. Real-time Soft-Label Correction Strategy

The proposed real-time soft label correction strategy con-
sists of two key components. First, it employs a dynamic
soft label update mechanism to iteratively refine the soft
labels associated with ambiguous speech segments. This ap-
proach reduces overreliance on potentially noisy ground truth
annotations and enables more accurate emotion representation.
Second, the strategy incorporates a joint loss function specif-
ically designed to support real-time label refinement. This
loss function combines a standard cross-entropy term to ensure
stable model training with an enhanced inter-class difference
loss, which encourages greater discrimination between emo-
tion categories. These components jointly improve the quality
of soft labels and enhance overall model performance.

Soft-Label Updating Mechanism. The soft label updating
process for ambiguous speech samples is formulated as a
weighted combination of the observed (annotator-provided)
labels and the model-generated predictions. This design is
based on two key observations: (i) deep learning models excel
at capturing complex patterns in data and can produce reliable
emotion predictions from the provided speech samples when
trained effectively, and (i7) the observed annotator provided
labels, though potentially noisy, are generally close approx-
imations of the true emotional states. Thus, combining both
sources through a weighted summation enables the model to
benefit from the provided (prior, potentially noisy) annotations
while gradually incorporating its own learned representations
and thereby improving label quality over time.

Importantly, the soft label refinement process is applied
exclusively to ambiguous speech samples. For unambiguous
samples, annotated with a consensus label, the original labels

are retained without modification. This is based on the premise
that clearly expressed emotions are less prone to annotator
disagreement and are thus less likely to contain labeling errors.
From this perspective, we classify all speech samples in a
given dataset into two disjoint subsets:

o Clear samples (S4), i.e., samples with (single) discrete
consensus labels that exhibit strong agreement across
annotators w.r.t. the expressed emotion.

o Ambiguous samples (Sp), i.e., samples associated with
multiple labels that reflect disagreement among annota-
tors and emotional uncertainty.

Let S denote the full set of speech samples, such that
S =SaUSp and S4 () Sp = @. Furthermore, let N1, No,
and N be the number of clear samples in S, ambiguous
samples in S, and samples in the complete set .S, respectively.
In a supervised K-class classification task, the labels corre-
sponding to the set of clear samples S4 are single (consensus)
labels 42, ., defined as the emotion categories considered by
the majority of annotators, i.e.:

i

y?ons = (yglv”’ygl, o ay%)aij'z € {Oa 1}a (1)

where Zy}'i = 1,i € {1,---,N1}, 2* € S4 denotes
the i*" speech sample. A value of yf = 1 indicates that
the majority of annotators assigned the ;' emotion class to
sample x, whereas a value of 0 indicates otherwise. This one-
hot encoding reflects the assumption that each clear sample is
associated with a single dominant emotion.

However, due to the limited number of annotators and
the inherently subjective nature of emotion perception, many
samples exhibit label ambiguity. These ambiguous samples (in
Sp) are characterized by inconsistent annotator opinions and
are labeled using multi-label representations y;”,zulti, ie.:

yfnlulti = (t;fl7 32817' o at%)’tfz € {07Z+}733i €S, (2

where, ¢ € {1,---,Na}, Z; denotes the set of positive
integers, and Ny is the number of ambiguous samples in Sp.
Here t%" represents the number of annotators who assigned
the j”{ emotion label to speech sample x?, capturing the
distribution of annotator responses. Since this form is not
directly compatible with standard model training objectives,
it is often converted to a binary multi-label form, as in [14]:

yf;:ulti = (STi7 8§i7 T 75%)’ 8;1 € {07 1}7 ' € SB, 3)
where i € {1,---, Ny}, and s;” =1 (or 0) indicates whether

at least one annotator perceived (or did not perceive) the
presence of the j!" emotion in sample x'. It is evident that
Eq. (1) is a special case of Eq. (3), i.e., when » sf =1, both
formulations are equivalent.

Nevertheless, this multi-label representation does not reflect
the relative prevalence of each emotion in the given speech
sample. To address this limitation, soft-labels yf’f which
capture the proportion of annotator votes for each emotion
class, are commonly used instead. Here, soft-labels are defined
as a probability distribution over the K emotion classes: i.e.:

y;v’ = (p:flapgif'" apf;)ap;,l € [Oal]a (4)
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where Y pt = 1,i€ {1, -
as:

, N2}, and each pf is computed

i (5)
S a SE

with tm denoting the number of annotators who assigned the
gth emotlon label to sample x'. This formulation captures
the proportion of votes per class and reflects the perceived
emotional distribution. However, due to the limited number of
annotators and the subjectivity of emotion perception, these
soft labels may still contain inaccuracies and may not fully
reflect the true emotional composition of the speech sample.
To alleviate this problem, we introduce a soft-label update

mechanism that generates corrected soft-labels yZ* as follows:

rj =

yaci _ yconé’ 33 6 SA7 v
‘ (1-a)y? +ayl ,ac

where yc denotes the corrected labels for sample z?, ys
stands for the original soft label and yy 2" is the label predicted
by the emotion recognition model for the same sample. The
parameter « € [0,1) is a correction coefficient that controls
the contribution of the model-generated prediction to the final
soft label. For clear samples (z? € S4) the original consensus
label is retained, while for ambiguous samples (z' € Sp), the
corrected label is obtained through a weighted combination of
the original soft label and the model-generated label.

[0,1),xi€SB, ©

The Joint Loss Function. The overall training objective
for our model is defined by a joint loss function L, which
combines two components: a cross-entropy loss L., for
optimizing model predictions, and an enhanced inter-class
difference loss L. designed for real-time soft-label correction.

The cross-entropy loss L., quantifies the divergence be-
tween the predicted emotion distributions and the target labels
and is widely used in supervised classification tasks. It is
formulated as:

| N K
or = NZZ log )zt €S,

where where the predicted probability pf
computed via the softmax function:

)

for class j is

i exp(oj?l)

P =K ,» ®
kglexp(of)

Here, N denotes the total number of training samples, oj-'i

€ [0,1] is the
target label (either consensus or soft label) and p;-”l enotes the
predicted probability for emotion class 7 in speech sample x*.

To support the dynamic correction of soft labels for am-
biguous samples, an additional loss term Lj. is introduced.
This enhanced inter-class difference loss acts as a regular-
ization mechanism, guiding the model-generated labels y_f;"

is the model output (logit) for class j, y;‘

to remain consistent with the observed soft labels ', while
mitigating overfitting, particularly when the dataset contains a
large proportion of ambiguous samples. Unlike the inter-class

difference loss originally proposed in [14], which assumes
binary labels, the enhanced version here accommodates soft
labels yf € {0,1}. The loss is defined as:

0, z' € Sy,
Lie={ 1 Sheme ; ©)
' EZZZ(GXP ) + € S,
i=1 j=1 k=1
where
u= max{(), (1 — y;”) (pf + [3) - yflpf } (10)

Here, 2° € S, denotes an ambiguous speech sample, yf €
[0,1] is the corrected soft label for class j, pfl is the cor-
responding predicted probability, and  is a margin control
coefficient that regulates the separation between class predic-
tions. This loss encourages higher inter-class discrimination,
especially in ambiguous contexts. Given the bounded nature of
y}“’l, B, and pil, the value of Lj. is constrained to the interval
[0, k% (exp(2) — 1)).

The final joint loss L used for training is the sum of the
two components, i.e.:

L= Leor+ Lie. (11)

C. Feasibility Analysis

In the previous section, we introduced the real-time soft
label correction strategy. In this section we now present a theo-
retical analysis and a formal proof to validate the effectiveness
of the proposed strategy.

Proof Overview. The main idea of the proof is to demonstrate
that, under a reasonable setting of the correction coefficient «
and margin control coefficients 3, the model parameters 034
obtained through the real-time soft label correction strategy
can converge to a region near the optimal parameters 6;, which
are obtained using the true label distribution. In other words,
the strategy effectively guides the training process toward the
underlying ground-truth distribution despite the presence of
noisy or ambiguous labels. To support this claim, we first
present two foundational lemmas:

Lemma 1. There exists a two-layer neural network with
ReLU (Rectified Linear Unit) activation functions and 2n + d
parameters that can represent any function over a dataset of
n samples in a d-dimensional space [39].

Lemma 1 implies that a sufficiently parameterized deep neural
network can approximate any label distribution, regardless of
the choice of loss function.

Lemma 2. Assuming a neural network with sufficient capacity,
for any loss function, L, the training dynamics follow the
convergence path: fo, — fo, — fo,, where fp, is the
is the model initialized with random parameters 0o, fo, is
is the model trained with true (clean) labels, and, and fy,
corresponds to the model trained with observed (possibly
noisy) labels [33].
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Lemma 2 suggests that while training may begin with ran-
dom initialization, convergence paths under true labels and
observed labels are both attainable and related.

Building upon these lemmas, the following theorem pro-
vides the basis for analyzing the behavior of the proposed
correction strategy:

Theorem 1. Let 6; denote the model parameters after t
optimization steps using true labels, and let 0y, denote the
parameters after M steps (M > t) using observed, poten-
tially noisy labels. Then, the final parameters 0y lie with a
neighborhood of 0y, i.e., 0y € [0; — R, 0 + Rar), where
Ry denotes the radius of the neighborhood that quantifies
the deviation caused by label noise.

Theorem 1 implies that if the label correction mechanism
effectively reduces the noise in observed labels (by leveraging
model-generated predictions and controlling the correction
dynamics via « and () then the model can be guided to
converge toward a representation close to that obtained under
true labels.

Proof: According to Lemma 1, a sufficiently parameterized
model can fit any label distribution and will converge after at
most M optimization steps. Lemma 2 further states that the
model, initialized at 6, reaches the parameter state 6, after ¢
iterations when trained on true grount truth labels y,.,.. Let us
consider the standard parameter update rule in deep learning.
At iteration ¢+ 1 the model parameters are updated as follows:

0t+1 = 9,5 -

Ir-g(0) (12)

0=6,

where [r is the learning rate, and g(¢) = g—g denotes the
gradient of the loss function L with respect to the parameters.
By recursively applying this update rule, the model parameters
at iteration M can be expressed as:

M—t—1

O =0, —1r > g(Q)‘g_g .
=01+

=0

13)

Let us define the averaée gradlent during the convergence
process as: ¢ = M 7 2 im0 89 . Since this expression is
bounded for all ¢t + i € [t, M — 1] the average gradient v
satisfies:

J=vs max {g(f),

14
t<i<M—1 0, 14

min {g(0)]

From Eq. (14), it follows that the final model parameters
0y lie within a neighborhood around the true label-trained
parameters ¢, with a radius defined by the learning rate and
maximum gradient norm:

O €{0|0: — Ry <0 < 0; + R}, (15)

where Ry; = lrmax{|g (0¢)|, -, ]9 (Onm—1)|}

According to Theorem 1, when the real-time soft label
correction strategy is applied, the gradient g(6) is defined as:

(ye)§ )
2t )
ij

N K K
> 2 | o 2 vijkexp(uijr) —
i=15=1 2 p=1

m=0,z" € S4,
m=1,z* € Sp,
g(0) =< (ye )fl (ycons)] ;&' € Sa, (16)
()] = (1—a)(ys)j +apg ',a' € S, _
wig = (1= ()} )(pj +8) = ()} #E

Vijk = (1 — (ys)F ) - (ys)iz ZZ? .

Eq. (16) indicates that the gradient and, hence, the convergence
behavior of the model is directly influenced by the correction
coefficient o and the margin control coefficient 3. These
parameters modulate the extent to which model predictions
correct or align with the soft labels, thereby controlling the
size of the radius R); in which convergence occurs.

Theorem 2. Let M (z1|9) be a training network converging
at iteration M iteration using observation labels and yielding
model parameters 0p;. Suppose the observation labels are
subsequently corrected and the network is retrained. Upon
convergence after M iterations with corrected labels, the
resulting parameters 9}, lie within a neighborhood of 0y,
ie, 0 € [0m — Ry, 00 + R}, where Ry, is the radius of
the neighborhood.

Proof: According to Theorem 1, the parameters 6,;, ob-
tained after training with observation labels, lies within a
neighborhood of the true-label parameters 6;, such that

{9M =0; +n1Ry,m1 € [—1,1], a7

95\4 =0t +n2R§;,n2 € —1,1].

where ?s and R, are the neighborhood radii associated with
training under observation labels and corrected labels, respec-
tively. n; and ng are scaling constants reflecting directional
distance. It follows that 6}, can be expressed relative to 6y
as:

0% = O0nm 4+ nRy = 00 +n2RG;, —niRy,m € [—1,1]. (18)

Thus, 0y, € [0m — R}, 00m + R),|, confirming that the
corrected-label solution lies in the vicinity of the original
observation-label solution, where n is a constant and R}, is
the neighborhood radius.

Fig. 1 illustrates two possible relationships between the
neighborhoods defined by Theorems 1 and 2. Here:

o O represents the region around 6, wiht radius R/,
within which 67, is located.

o O, represents the region centered at 6;, defined by the
original radius Rjy;.

In both scenarios, the shaded area denotes regions where
0, is closer to 6; than @);. Since observation labels are fixed
for a given dataset, the size of neighborhood O remains
approximately constant for a given model. Let’s define the
proportion of the shaded ara S to the are of O, denoted as

So,, as:
S

pP=_
So,

19)
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(b) Relationship 2

Fig. 1: Illustration of the relationship between the two
neighborhoods identified in Theorem 1 and Theorem 2

A higher value of P indicates a greater probability that 6,
lies closer to the true-label parameters 6; than 6,;. For a
constant Ry, the probability P increases as Rj); decreases.
The correction radius R, is influenced by the correction
coefficient o and the margin control coefficients (. This
control relationship can be expressed as:

(a, B) = (Rar, RSy) — Ry — P (20)

where — denotes the directional influence of the preceding
variables on the subsequent ones.

In summary, by appropriately tuning « and g, it is possible
to reduce the neighborhood radius R/, thereby guiding 6/,
closer to 6; than 6,;, which establishes the theoretical fea-
sibility and effectiveness of the proposed real-time soft label
correction strategy.

IV. THE PROPOSED METHOD

In this section, we now present the main contribution of this
work, i.e., our novel model for speech emotion recognition,
designed specifically to handle ambiguous speech samples.
We start the section with a brief high-level description of the
proposed approach and then proceed with the description of
the individual components.

A. Overview

Speech emotion recognition remains challenging due to
label ambiguity, subjective annotation noise, and the complex
temporal-spectral dynamics of speech signals, as discussed
in the Introduction. To address these challenges, we propose
an enhanced ambiguous speech emotion recognition model,
illustrated in Figure 2. The model architecture consists of five
main components that are described in detail in the following
sections, i.e.: (7) a spatial feature extraction module (§IV-B),
a temporal module (§IV-C), a multi-level fusion module
(§IV-D), a real-time soft label correction module (§IV-E), and
a classification module that determine the final emotion class
of the input speech sample (§IV-F).

B. The Spatial Module

We use Log Mel-Filter Bank (Fbank) features as the in-
put, which form a conventional time—frequency spectrogram

widely adopted in speech and audio processing. This represen-
tation provides a two-dimensional structure suitable for CNN-
based modeling. The resulting Fbank feature maps are fed
into a convolutional network, i.e., the spatial domain module,
for hierarchical emotion feature extraction. The architecture of
this module is illustrated in Figure 3.

To align with the input format expected by 2D convolutional
layers, we first reshape the extracted Fbank features into a
three-dimensional tensor Xi, € R /XM where ‘1’ denotes
the input channel dimension required by 2D-CNNs, f denotes
the number of frames and M represents the number of Mel
filter banks. This representation preserves the two-dimensional
time-frequency structure of speech, which is essential for
learning emotion-relevant spatial patterns.

Given that each Fbank feature map captures spectral in-
formation over a sequence of frames, we design a parallel
convolutional structure to extract features along different
axes of the time-frequency domain. Specifically, we apply
three parallel convolutional operations: one emphasizing tem-
poral patterns, another focusing on spectral characteristics, and
a third capturing joint time-frequency dependencies. Unlike
conventional CNN-based SER approaches that apply uniform
2D kernels directly on spectrograms, our parallel design ex-
plicitly separates temporal, spectral, and joint Spatio-temporal
modeling through distinct kernel shapes (11x1, 1x9, and 5x5).
This decomposition enables the model to capture complemen-
tary emotional cues from different perspectives before fusing
them into a unified representation. The output of this parallel
convolution block is defined as:

X. = C(Convla(Xm), C’onvlb(Xin), Convlc(Xm)),
(2D
where X, € R2*#x¥ and C(-) denotes channel-wise
concatenation. The operations Conv'®(-), Conv'®(-), and
Conv'(-) correspond to convolution layers designed to cap-
ture temporal, spectral, and joint temporal-spectral features,
respectively.

To further deepen the representation and aggregate mid-level
features, we pass X, through five consecutive convolutional
layers using 3 x 3 kernels. These layers progressively refine
the feature maps while reducing spatial resolution. Notably, no
downsampling is applied after the final convolution to preserve
critical information. The resulting feature map X is given by:

Xy = Conv®(X,), Xge€ RO &3, 22)
where Conv®(-) represents the stacked five-layer convolu-
tional block. Finally, we apply global average pooling (GAP)
to compress the spatial feature map into a fixed-dimensional
embedding X, € R, which serves as the output of the spatial
domain module:

X, =GP(Xy), X,eR%, (23)
where GP(-) denotes global average pooling. This operation
summarizes the learned spatial features into a compact repre-

sentation suitable for downstream fusion and classification.
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Fig. 2: High-level overview of the proposed ambiguous speech emotion recognition model. The model integrates a spatio-
temporal feature extraction module based on deedicated CNN and Wav2Vec 2.0, followed by multi-level fusion to capture
complementary emotional cues. A real-time soft label correction module is also designed to dynamically refine ambiguous
labels during training using a combination of cross-entropy and enhanced inter-class difference losses.
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Fig. 3: Structure of the spatial module. The module operates
on a time—frequency representation of the input speech. It
employs three parallel convolutional branches with kernel
sizes of 11x1, 1x9, and 5x5, respectively, corresponding to
temporal, spectral, and joint Spatio-temporal modeling. Each
branch outputs 8 feature maps, where “8” denotes the number
of convolutional filters (channels) used to capture diverse
patterns.

C. The Temporal Module

Speech waveforms are continuous-time signals, and cru-
cial emotion-related information is often embedded in their
temporal variations. Accurately modeling these dynamic is
thus essential for robust speech emotion recognition. To this
end, we leverage Wav2Vec 2.0, a powerful self-supervised
representation learning framework pre-trained on large-scale
speech corpora. Its strong contextual encoding capabilities
provide valuable a priori knowledge, allowing it to effectively
extract rich temporal emotion features from raw waveforms.

The temporal module, illustrated in Figure 4, is employed
to extract such features directly from the input waveform.

Given an input temporal speech waveform x; we first apply
a series of one-dimensional convolutional layers to produce a
feature map G € RT*d1 where T corresponds to the number
of frames (which varies with input length), and d; is the
feature dimension. A linear transformation is then applied to
project G into a new representation space:

G’ = Linear(G), G’ € RT*%, (24)
where dy denotes the dimension of the transformed features.
To improve robustness and simulate masked language mod-

Wav2vec2.0 Attention mechanism
% > > : 1XT lxdz
= —3> @
» z o > g
— > a > = l
X '"""o
Pg 3 >
> 2 > LA
Txdz
(*) Matrix multiplication . Input

Fig. 4: Structure of temporal module. We use Wav2Vec 2.0
to extract high-level temporal features from raw speech wave-
forms using convolution, masking, and transformer blocks.

eling objectives during fine-tuning, a masking operation is
applied to G, yieldig:

Fi = Mask(G)eR" > (25)

where Mask(-) randomly masks segments of the sequence.
The masked features are then passed through the Transformer
encoder of Wav2Vec 2.0:

Fy = Transformer(F;) € RT*%2, (26)

To obtain a fixed-length temporal feature vector, we apply
another linear transformation followed by a weighted aggre-
gation using matrix multiplication:

Fy = Linear(Fy), FyecR™T, 27)

F,=F@F,F e¢R>T F, e R, (28)

where ® denotes matrix multiplication. The resulting vector
F} represents the aggregated temporal features of the input
speech that captures high-level emotional information across
the entire sequence.

D. The Multi-level Fusion Module

Since analyzing temporal or spatial features in isolation
limits the model’s ability to fully capture the multifaceted
nature of speech signals, we introduce a multi-level fusion
module to integrate both temporal and spatial emotion repre-
sentations. This design allows the model to comprehensively
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learn emotional cues that are distributed across time and
frequency dimensions.

First, we obtain an intermediate fused representation Fl;
by concatenating the spatial emotion feature X, € R% and
temporal emotion feature F; € R followed by a series of
fully connected layers with ReL.U activations:

Fo =6 (6 (C(Xs, Fo) Wi + B}) Wi + B}) W} + B}, (29)

where C(-) denotes the concatenation operation, §(-) is the
ReLU activation, and W}, B (for i = 1,2,3) are trainable
weight and bias parameters. This operation maps the concate-
nated features into a joint representation space that enables
interaction between the temporal and spatial modalities.
Next, to produce the final fused representation F!,, we
perform a soft aggregation by applying a softmax function to
the sum of three components: linear projections of the spatial

and temporal features, and the intermediate fused vector:

F!, = softmax (Linears(X,) + Linear;(F;) + Fst) , (30)

where Linears(-) and Linear;(-) are learnable linear trans-
formations specific to the spatial and temporal features, re-
spectively, and I/, € R% is the final fusion representation
of dimension d;. The presented multi-level fusion mechanism
allows the model to not only learn combined feature represen-
tations but also dynamically adjust the contribution of each
modality during prediction.

E. The Real-time Soft-Label Correction Module

In Section III, we described the real-time soft label correc-
tion strategy in detail and provided a theoretical justification
for its effectiveness. In this section, we now apply the proposed
strategy directly within our training framework. The complete
process is outlined in Algorithm 1.

Algorithm 1 Real-Time Soft Label Correction Strategy

Input: Speech sample set S = S5 U Sp, where Sy NSp =&
Output: Real-time corrected label yfl
1: Fine-tune model M;(z | 6) using clear speech samples S to obtain
My,
2: Integrate fine-tuned model M1, with randomly initialized model Ma (" |
0) to form model M,

3: Randomly shuffle samples and input speech z* € S into model M)

4: for each sample ¢ = 1 to N do

5:  Extract features: F/, = Mp(z?)

6: ifz' € Sp then ]

7: Update label: y** = Q(y2", F/,), where Q(-) is the label update
function

8: else ) )

9: Assign original label: ygl = yf;ns

10:  end if )

11:  Compute loss: Loss = L(F!, | Mp,yZ")

12: end for

Notation clarification: For clarity, the main notations in
Algorithm 1 are summarized as follows: 6 denotes the model
parameters; N is the total number of training samples; yj”
represents the soft-label probability of sample x* for class j;
and H!, indicates the sequence features extracted from sample

xZ

In this algorithm, we begin by fine-tuning the network
M;i (2% | 0) using clear-labeled samples from S4, resulting
in model M;,, which captures reliable emotional tendencies.
This step mitigates the potential negative impact of ambiguous
speech during training. The complete dataset S is then passed
through the composite model M,,. For each input z° € S, if the
sample belongs to the ambiguous set Sp, its label is updated
using the real-time soft label correction function €(-). If the
sample belongs to the clear set S4, the original (hard) con-
sensus label is retained. Finally, the model prediction and the
corrected label are used to compute the loss L(F!, | M, y*").

F. Classification

The final classification component of the proposed model
employs a multi-layer fully connected neural network. This
structure is designed to perform fine-grained learning over
the distributed emotional features and effectively map them
to discrete emotion categories. The classification process is
formulated as follows:

y(' | M,) = softmax(ﬁlzi)7 €2y}

where y(z° | M,) denotes the predicted probability distri-
bution over the emotion classes for the input speech sample
x', and y*' represents the output of the final fully connected
layer based on the features extracted by the model M. The
use of the softmax function ensures that the output forms a
valid probability distribution over all emotion categories and
facilitates effective multi-class classification.

V. EXPERIMENTS

In this section, we conduct a rigourous experimental evalu-
ation of the proposed speech emotion recognition model and
report results that: (i) compare our approach to competing
state-of-the-art methods from the literature, (i) explore the
impact of various model components through an ablation
study, (#i¢) investigate the impact of the hyperparameters «
and (3 on classification performance, (iv) study the impact of
the model’s learning objective, and (v) analyze the generated
embedding space.

A. Experimental Setup

The proposed model is implemented using PyTorch, utiliz-
ing a 64-bit Ubuntu 22.04 system equipped with an NVIDIA
RTX 3090 GPU for training and testing.

Table I outlines the parameter settings for the training
procedure. Unless otherwise specified, the soft-label correction
(SLC) phase adopts the same optimizer and fixed learning rate
(1e-5) as the fine-tuning stage. The masking probability fol-
lows the default configuration of the HuggingFace Wav2Vec2-
base-960h model. The training begins by fine-tuning the
Wav2Vec 2.0 model using the set of clear samples S4,
resulting in an intermediate model My,. This step initializes
the model with a domain-specific emotional representation
aligned with the IEMOCAP dataset. Subsequently, My, is
integrated with the null-domain module M> to construct the
complete soft-label correction model M,,, which is then used to
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TABLE I: Parameter settings utilized during the training
procedure of the proposed speech emotion recognition model.

Name Value
«@ 0.3
€ le—5
B 0.1
Batch size 16
Optimizer Adam
Learning rate le—5
Weight decay 0.0001
Max epoch 100

Early stopping patience 16

learn the underlying emotional distribution across all samples,
including ambiguous ones. To address class imbalance caused
by differing frequencies of emotion categories, the inverse
class frequency is employed as the class-wise weight in the
loss function during training. This ensures that minority emo-
tion classes are not underrepresented in the learning process.

For evaluation, a Leave-One-Speaker-Out (LOSO) cross-
validation strategy is adopted, following standard practice in
speech emotion recognition research [14], [18]. In this setup,
the speech data from one speaker is reserved as the validation
set in each fold, while the remaining data is used for training.

To ensure a comprehensive performance evaluation, two
commonly used metrics are reported for our experiments:
Weighted Accuracy (WA) and Unweighted Accuracy (UA)
[40], [41]. WA reflects the overall classification accuracy
across all utterances, accounting for class distribution, while
UA measures the average accuracy across all emotion classes,
treating each class equally regardless of frequency.

B. Datasets

Given that the primary goal of this study is to address the
challenge of label noise and improve the model’s ability to
learn genuine emotional distributions from potentially noisy
annotations, the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) dataset [42] is selected for experimentation, as it
is (to the best of our knowledge) the only publicly available
multi-label dataset suitable for our experiments.

The IEMOCAP dataset consists of recordings of five dyadic
sessions involving 10 actors (5 male, 5 female) in two types
of scenarios: scripted dialogues and spontaneous improvi-
sations. The dataset includes rich multimodal data such as
audio, video, and text, captured during interactive emotional
exchanges between participants. To investigate both the ambi-
guity inherent in emotional expression and the subjectivity of
emotional perception, we follows the experimental protocol
of [34], which utilizes samples from both improvised and
scripted settings. Four commonly studied emotion categories,
i.e., anger, happiness, sadness, and neutrality, are selected as
the target classes for the evaluation.

In this study, we focus on the IEMOCAP dataset because
it aligns well with the objectives of our method and provides
the necessary conditions for evaluation. It contains multi-label
annotations, sufficiently ambiguous emotional samples, and
diverse speakers that enable leave-one-speaker-out (LOSO)

TABLE II: Dataset (IEMOCAP) partitioning used in the
experiments. S4 represents clear and Sp ambiguous samples.

Session  Session 1  Session 2  Session 3  Session 4  Session 5
Sa 1316 1248 1324 1216 1494
SB 726 801 973 1059 890

validation to examine model generalization. Hence, we adopt
IEMOCAP as the benchmark corpus to ensure both experi-
mental feasibility and fair comparison with prior work.

C. Data preprocessing

Inspired by the findings in [43], we observe that speech seg-
ments with a duration of 7 seconds typically contain sufficient
information for effective emotion recognition. Therefore, we
segment utterances longer than 7 seconds into fixed 7-second
intervals. For shorter utterances, particularly those less than
1.5 seconds in length, which we found to be suboptimal for
processing by the Wav2Vec 2.0 model, we apply zero-padding
to extend them to at least 1.5 seconds. To ensure that emotional
cues are preserved and properly learned by the model, we
apply zero-padding at the end of the audio rather than at the
beginning or middle. After applying these preprocessing steps,
we partition the dataset as detailed in Table II.

During the feature extraction stage, we convert all original
speech signals to digital form at a 16 kHz sampling rate. We
apply pre-emphasis filtering to amplify high-frequency com-
ponents, which are often critical for emotion-related spectral
features. We then compute logarithmic Mel filter bank (MFB)
energy features [44], [45], using 40 Mel filters, a 40 ms
Hamming window, and a 10 ms frame shift. These features
serve as input to our models for both training and evaluation.

D. Comparison Methods

To rigorously evaluate the proposed method, we select a
range of state-of-the-art models for comparatison, all of which
explicitly address the challenge of speech ambiguity. The
goal of the comparitive analysis is to highlight the superior
performance and notable advantages of our model in handling
ambiguous speech.

The baseline models considered in our experiments take
different strategies to mitigate the negative impact of emotional
ambiguity in speech emotion recognition and can be broadly
categorized into three groups: (i) models that enhance dataset
reliability [28], [29] or exploiting multiple feature represen-
tations [30], (¢7) models that directly utilize the observation
labels of ambiguous speech without further label refinement
[14], [31], and (47¢) models that update ambiguous observation
labels before training to better model true emotional distribu-
tions [13], [34].

It is worth noting that other studies have explored speech
emotion recognition based solely on single-label strategies
[27], [46]. These works tend to neglect the intrinsic ambiguity
and complexity of emotional expression in speech and are,
therefore, not considered in this work. Similarly, models
leveraging fusion techniques accross different modalities (e.g.,
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speech and text) [47], [48] attempt to compensate for the
mabiguity by introducing auxiliary information. However,
their focus diverges significantly from the present study, which
is dedicated to resolving emotional ambiguity strictly within
the speech modality. As such, methods that either ignore
emotional ambiguity or introduce additional modalities are
excluded from our comparisons.

The following models are included in our evaluation:

Co-teaching (2021): A progressive co-teaching frame-
work that uses loss values to estimate sample difficulty,
gradually training the model from simple to hard samples
to mitigate issues with early-stage interference caused by
emotionally ambiguous speech [30].
Attention-LSTM-Attention (2020): A SER model com-
bining attention mechanisms and LSTMa to extract emo-
tional features across both temporal and feature dimen-
sions. This approach constructs a derived dataset from
IEMOCAP, distinguishing between clear and ambiguous
samples to evaluate the dataset’s reliability and its impact
on model performance [29].

LLMs (2024): A method that synthesizes emotionally

rich speech data using large language models (LLMs)

combined with IEMOCAP and student speech datasets.

Transformer-based architectures are used for spatial fea-

ture extraction to enhance data reliability. [28].

Soft-target Training (2018): A soft-label training

method that adjusts soft label representations to effec-

tively utilize ambiguous speech samples without domi-

nant consensus labels [31].

Inter-class Difference Loss (2023): A multi-label train-

ing approach that introduces an inter-class difference loss

function that enabled the network to automatically learn
the distribution of emotions by emphasizing differnces

between emotion categories. [14].

. Emotion Existence (2019): A method that first estimates
the presence or absence of each emotion in speech sam-
ples using multiple labels and then refines the estimates
with soft labels to resolve emotional ambiguity [13].

. Meta-learning (2020): A meta-learning framework that

performs real-time correction of noisy labels and es-

timates sample contribution weights, aiming to correct
ambiguously labeled samples and reduce their negative

impact during model training [34].

AMSNet (2023): A multi-scale attention-based frame-

work designed to enhance the discriminative power of

speech emotion representations. The framework employs
segment-level feature refinement and hierarchical atten-
tion to improve robustness against ambiguous emotional

expressions [49].

STACN (2025): A sparse temporal aware capsule net-

work designed to improve robustness against ambiguous

or noisy emotional labels by integrating sparse temporal
modeling, multi-head attention, and capsule-based feature
routing, achieving stable performance in speech emotion

recognition tasks [50].

TABLE III: Comparison with the state-of-the-art. The
proposed model leads to the best overall performance both
in terms of WA and UA.

Train set Metrics

Method Label

Clear Ambiguous WA (%) UA (%)
Co-teaching (2021) [30] Consensus v 62.3 -
Attention-LSTM (2020) [29] Consensus v Vv 67.7 65.1
LLMs (2024) [28] Consensus vV - - 66.6
Vv - 58.5 57.4
Soft-target (2018) [31] Soft - v 53.6 54.0
v v 62.6 63.7
A - 66.0 63.9
Inter-class (2023) [14] Multi - va 60.5 61.7
A v 68.3 66.2
Emotion existence (2019) [13] Multi & Soft v v 66.1 65.4
Meta-learning (2020) [34] Update Consensus vV - 65.9 61.4
AMSNet (2023) [49] Multi Vv Vv 69.2 70.5
STACN (2025) [50] Multi VA Vv 68.8
Proposed model (ours) Update soft vV v 70.3 71.3

E. Comparisons with State-Of-The-Art Methods

In the first set of experiments, we compare the proposed
model with competing state-of-the-art (SOTA) SER models
from the literature. We train our models on either clear,
ambiguous or both types of samples (depending on the ca-
pabilities of the model), as detailed in Table III. To ensure
a fair comparison, the results of other baseline methods are
directly cited from the corresponding literature. From the
presented results, it can be seen that the proposed model
demonstrates superior performance over all considred methods
in both weighted accuracy (WA) and unweighted accuracy
(UA), achieving a WA score of 70.3% and UA score of 71.3.

SOTA Comparison. Compared to models that focus on
enhancing dataset reliability or leveraging different feature
representations, our method delivers consistent improvements.
Specifically, relative to Attention-LSTM-Attention (2020)
[29], we observe a 2.6% point gain in WA and a 6.2% point
gain in UA. Compared to LLMs [28], our model achieves a
4.7% point improvement in UA. These results highlight that
dataset augmentation alone does not sufficiently resolve the
label noise caused by subjective annotation errors. In compar-
ison to Co-teaching [30], we observe an 8.0% point increase in
WA. This improvement can be attributed to our model’s ability
to capture fine-grained spatial-temporal information through a
dedicated network structure, as well as the dynamic adjustment
of ambiguous labels during training.

When comparing to models that directly use observation
labels of ambiguous speech without correction, our model also
exhibits clear advantages. For instance, compared with Soft-
target training [31], our approach improves WA and UA by
7.7% and 7.6% points, respectively. This is largely due to
our real-time correction strategy, which reduces dependence
on potentially inaccurate observation labels. Compared with
Inter-class Difference Loss [14], we achieve 2.0% and 5.1%
points improvements in WA and UA, respectively. These gains
demonstrate the effectiveness of balancing the contributions
of original soft labels and model-generated labels via the
correction coefficient o

In terms of label correction approaches, our model also
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TABLE IV: Performance statistics across LOSO folds. Mean,
standard deviation, and 95% confidence intervals are reported.

Metric Mean (%) Std (%) 95% CI (%)
WA 70.32 +3.02 [68.16, 72.49]
UA 71.30 +3.34 [68.91, 73.69]
1.0
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Fig. 5: Confusion matrix of the proposed model under
one LOSO fold. The figure illustrates the per-class recogni-
tion performance, indicating that the model performs reliably
across different categories, with noticeable confusions mainly
between Happiness/Sadness and Neutrality.

outperforms existing methods. Compared to Emotion Exis-
tence [13], we observe improvements of 4.2% points in WA
and 5.9% points in UA. This suggests that our method better
captures the emotional nuances in speech samples lacking a
discrete consensus label. Similarly, when compared with Meta-
learning [34], our model shows substantial improvements, i.e.,
4.4% points in WA and 9.9% pints in UA—due to its ability
to produce a smoother convergence path and to leverage a
broader set of ambiguous samples during training.

Detailed Model Analysis. To further assess the robustness of
the reported improvements over the state.of-the-art, Table IV
reports the mean, standard deviation, and 95% confidence
intervals across the 10 LOSO folds. Specifically, our model
achieves WA = 70.32 £ 3.02% (95% CI: [68.16, 72.49]) and
UA =71.30 % 3.34% (95% CI: [68.91, 73.69]), demonstrating
that the gains are consistent and statistically significant.

In addition to the standard WA and UA metrics, we also
report several supplementary indicators to provide a more
comprehensive assessment of the proposed model. These indi-
cators are summarized in Table V, which presents macro and
weighted versions of precision, recall, and F1-score. Together,
these metrics reflect class-balanced performance, robustness
under class imbalance, and the overall discriminative ability
of the model.

To further illustrate the per-class recognition performance,
we show in Fig. 5 the confusion matrix of the proposed
model under a randomly selected LOSO fold. The results
indicate that the model performs relatively consistently across
most categories, with noticeable confusions mainly between
Happiness/Sadness and Neutrality.

TABLE V: Additional performance metrics of the proposed
model. To provide a more comprehensive evaluation as sug-
gested by the reviewers, we report Fl-score, weighted F1-
score, macro/weighted precision, and macro/weighted recall
of the proposed method.

Metric Value (%)
F1-score (macro) 70.78
Fl-score (weighted) 68.33
Precision (macro) 72.04
Precision (weighted) 70.97
Recall (macro) 71.59
Recall (weighted) 68.31

TABLE VI: Inference efficiency of our model measured on
a single NVIDIA RTX 3090 GPU (batch size=1). Latency is
averaged over 100 runs. RTF = real-time factor.

Input length (s) | FLOPs (G) | Latency (ms) | RTF | Peak Mem (GB)

1.00 6.95 4.4410.05 0.004 4.37
1.20 8.37 4.7610.02 0.004 4.39
1.60 11.21 5.16£0.02 0.003 4.41
1.94 13.64 5.6640.04 0.003 4.45

F. Inference Efficiency

Beyond recognition accuracy, we also evaluate the inference
efficiency of our model, as real-time performance is essen-
tial for HCI applications. Table VI summarizes the FLOPs,
inference latency, real-time factor (RTF), and peak memory
consumption across different input lengths. The RTF is simply
obtained by dividing the inference time by the input audio
duration. Our measurements show that the model achieves effi-
cient inference with moderate GPU memory usage (~4.4GB),
demonstrating its suitability for practical deployment. It should
be noted that publicly available code resources for related
approaches are very limited, and most prior works do not
report detailed efficiency statistics, which further highlights
the contribution of our analysis.

G. Ablation Analysis

The comparative analysis presented in the previous section
demonstrates that our proposed model outperforms existing
approaches in handling ambiguous speech. In the next series
of experiments, we conduct a series of ablation studies to
better understand the impact of individual model components
and learning objectives. While spatio-temporal models have
been extensively explored in prior research, we focus our
ablation studies on the main contributions of this, such as the
real-time soft label correction module and associated learning
objectives. Specifically, in the ablation studies, we explore:
(7) the impact of the spatio-temporal network module, (i)
the influence of the soft label correction coefficient o and the
margin control coefficient 3, and (ii%) the effect of different
loss combinations in the overall learning objective.

Impact of the Spatio-Temporal Module. Table VII presents
an analysis of the contributions of different architectural
modules on the recognition performance of our model on the
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TABLE VII: Ablation study exploring the impact of different
model components, i.e., features used in the fusion module.

Impact analysis of multiple fusion modules

Spatial-only Temporal-only Spatial-temporal Spatial-temporal

Fold model model integrated model multi-fusion model

WA (%) UA (%) WA (%) UA (%) WA (%) UA (%) WA (%) UA(%)
1 45.1 44.0 70.3 70.4 68.6 69.9 69.6 71.0
2 51.1 552 66.3 66.7 68.4 68.6 69.8 70.9
3 44.6 449 69.0 72.8 68.8 73.1 73.0 755
4 54.3 532 734 734 70.7 70.1 74.6 76.2
5 50.1 499 64.8 64.7 64.3 64.9 66.7 67.6
6 48.8 473 66.8 66.2 68.0 67.5 68.6 68.1
7 39.5 35.8 629 64.0 62.6 63.5 65.4 66.6
8 46.6 49.5 70.5 70.0 69.6 70.0 73.7 727
9 478 50.4 68.9 69.4 70.2 69.8 69.7 70.0
10 38.1 41.8 70.1 71.4 70.8 70.6 72.2 74.4
Average 46.6 472 68.3 68.9 68.2 68.7 70.3 71.3

IEMOCAP dataset. The results indicate that the spatial-only
model performs significantly worse than other configurations,
highlighting its inability to capture temporal dynamics, an
essential component for emotion recognition. In contrast, the
temporal-only model achieves performance closer to the full
spatial-temporal model, suggesting that temporal features play
a more dominant role in our overall framework. However, the
best performance is observed with the spatial-temporal multi-
fusion model, which leverages the complementary strengths of
both spatial and temporal representations. This result confirms
the effectiveness of jointly modeling spatial and temporal
feature interactions for improved emotion classification.

Impact of Hyperparameters o and 3. Table VIII shows
the influence of different correction coefficients o and margin
control coefficients 8 on model training. To determine the opti-
mal settings for these hyperparameters, we adopt a controlled
variable approach by tuning one parameter at a time while
holding the other constant. We begin by fixing § = 0.1 and
varying o to observe its influence on performance. Results
show that the model achieves the strongest performance when
the value of a equals o = 0.3.

Subsequently, keeping o = 0.3 fixed, we evaluate different
values of /3 and find that 8 = 0.1 yields the highest perfor-
mance. As shown in Table VIII, using o = 0.3 and 8 = 0.1
results in 0.2% points improvement in both weighted accuracy
(WA) and unweighted accuracy (UA) compared to using o = 0
with the same (. This performance gain is attributed to the
presence of noise in the observation labels of ambiguous
speech, and the ability of « to balance the influence between
observed and model-generated labels. Additionally, we see that
setting o = 0 disables the online correction process and forces
the model to rely solely on static soft labels. As shown in
Table VIII, this leads to a drop in both weighted accuracy
(WA) and unweighted accuracy (UA), indicating that updating
of ambiguous labels in real-time contributes positively to the
overall performance. This confirms that the iterative, online
correction mechanism plays an essential role in mitigating the
impact of annotation ambiguity. Furthermore, we observe that
increasing 3 beyond 0.1 (with o = 0.3) leads to a decline in
model performance. This is likely because an excessively large
margin coefficient suppresses valuable prediction signals from

TABLE VIII: Sensitivity analysis with respect to the correc-
tion coefficient  and margin control coefficient 5.

a(B=0.1) WA (%) UA %) B(a=0.3) WA (%) UA (%)
0 69.5 70.6 0 69.8 71.0
0.1 69.8 71.0 0.1 70.3 71.3
0.2 69.8 70.1 0.2 70.0 70.7
0.3 70.3 71.3 0.3 69.6 70.4
0.4 69.8 71.1 0.4 69.5 70.7
0.5 69.7 70.9 0.5 69.7 70.7
0.6 69.5 70.9 0.6 69.3 70.2
0.7 70.0 70.7 0.7 69.3 70.6
0.8 69.6 70.9 0.8 69.4 70.3
0.9 69.4 70.6 0.9 69.2 70.5

emotion-positive categories, thereby reducing the effectiveness
of the correction mechanism.

Impact of Loss Functions. Table IX presents an analysis
of model performance under different combinations of loss
functions. To ensure consistency and fairness in the ablation
experiments, we fix the correction coefficient to v = 0.3 and
the margin control coefficient to S = 0.1. Additionally, Fig. 6
provides t-SNE visualizations, illustrating the distribution of
emotional features learned under each loss configuration.

From the results in Table IX, we observe that both the cross-
entropy loss L., and the enhanced inter-class difference loss
Lj. contribute most effectively when used in their respective
roles, i.e., L., as the primary loss function for training on
clear speech samples, and L;. as a regularization term for
correcting soft labels in ambiguous samples. Compared to
using either L., or Lj. alone for both training and correction,
the combined loss function improves weighted accuracy (WA)
by 0.1% and 0.7% points, and unweighted accuracy (UA) by
0.3% and 0.9% points, respectively.

These results can be attributed to the complementary nature
of the two loss functions. While L, is well-suited for opti-
mizing predictions on clearly labeled data, it lacks the ability
to effectively handle ambiguity in soft labels. In contrast, Ly,
is designed to increase inter-class separability in emotionally
ambiguous samples but provides limited benefit for already
well-separated clear samples. As previously observed in Ta-
ble VIII, excessively increasing the boundary margin via 3 can
actually degrade performance, particularly on clear samples
where emotional boundaries are already well-defined. Thus,
employing a hybrid loss function that combines both L., and
Ly, allows the model to capitalize on the strengths of each:
robust learning from clear data and improved label correction
for ambiguous cases.

t-SNE Visualizations. Figure 6 presents a t-SNE visualization
of the learned emotion representations under the four training
configurations. As can be seen, the degree of emotional
clustering follows the pattern: (¢c) > (a) > (b) > (d). This
pattern highlights the effectiveness of the soft label correction
strategy in mitigating the negative impact of label noise in
ambiguous speech, which otherwise misguides model training.

A closer comparison between subfigures (c) and (a) reveals
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TABLE IX: Ablation study with respect to the components
of the overall learning objective.

Leor and Leor Lic and Ly, Leor and Ly
Fold
WA (%) UA (%) WA (%) UA (%) WA (%) UA (%)
1 70.4 70.7 69.0 70.3 69.6 71.0
2 68.5 70.1 68.7 69.5 69.8 70.9
3 71.5 75.3 71.2 74.8 73.0 75.5
4 74.3 75.4 70.5 71.8 74.6 76.2
5 66.7 67.2 65.2 65.8 66.7 67.6
6 67.7 65.9 70.3 69.6 68.6 68.1
7 65.0 67.6 65.9 67.4 65.4 66.6
8 74.9 72.4 73.0 71.1 73.7 72.7
9 70.5 71.3 71.7 70.7 69.7 70.0
10 722 74.5 70.5 72.6 72.2 74.4
Average 70.2 71.0 69.6 70.4 70.3 71.3

that emotion clusters in (a) are more scattered and distributed
in four distinct directions, consistent with the results in Ta-
ble IX. This observation supports the conclusion that the cross-
entropy loss function alone lacks sufficient discriminative
power for ambiguous emotion categories. Further comparisons
between (c) and (b) show that although (b) exhibits a larger
inter-class margin, the distribution of neutral emotions is more
diffuse and significantly overlaps with other categories. This
suggests that while L. effectively increases inter-class sepa-
ration, it can simultaneously introduce confusion—particularly
for more ambiguous emotion types such as neutrality. Lastly,
in comparing (c) and (d), we observe that the clusters corre-
sponding to happiness, anger, and neutral emotions in (c) are
more compact and well-separated. This demonstrates that soft
label correction on ambiguous speech samples helps guide the
model to better capture the underlying emotional distribution.

VI. SUMMARY

In this paper, we proposed an enhanced ambiguous speech
emotion recognition model to address several key challenges in
the field: the over-reliance on subjectively annotated labels, the
disregard for proportional differences among emotions within
multi-label annotations, and the underutilization of speech
samples lacking dominant consensus labels. Our model in-
tegrates Convolutional Neural Networks (CNN) and Wav2Vec
2.0 to jointly capture spatial and temporal characteristics of
speech, with a multi-level fusion mechanism that adaptively
balances these features for more effective representation. A
key contribution of the proposed approach is the introduction
of a real-time soft label correction strategy, specifically de-
signed to handle ambiguous labels by dynamically refining
them during training. This helps reduce the adverse effects
of noisy annotations on model convergence. This novel real-
time refinement mechanism distinguishes our approach from
existing soft-label or offline correction approaches, thereby
strengthening the overall novelty of our method. We also
provided a formal mathematical proof of the feasibility and
effectiveness of the proposed correction mechanism. Extensive
experiments conducted on the IEMOCAP dataset confirmed
the superiority of our method, yielding improvements of 2.0%
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Fig. 6: t-SNE plots for different loss combinations with
a = 0.3,8 = 0.1: (a) L, is used for both model training
and soft label correction; (b) Enhanced Lj. is used for both
model training and soft label correction; (c) Enhanced Lj.
is used for soft label correction and L., is used for model
training; (d) No soft label correction is applied (o = 0), Leor
is used for training, and [ is unrestricted.

points in weighted accuracy (WA) and 4.7% in unweighted
accuracy (UA) over existing state-of-the-art approaches. Fur-
thermore, ablation studies on the real-time soft label correction
module highlighted its critical role in enhancing model per-
formance and provided deeper insights into its contribution.
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